| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 |
- import cv2
- import numpy as np
- import json
- import matplotlib.pyplot as plt
- import math
- from typing import Union, List
- from app.core.logger import get_logger
- logger = get_logger(__name__)
- def get_points_from_file(json_file):
- """辅助函数,从JSON文件加载点"""
- with open(json_file, 'r') as f:
- data = json.load(f)
- return data['shapes'][0]['points']
- def draw_rotated_bounding_boxes(image_path, inner_box_file, outer_box_file, output_path=None):
- """
- 在图片上绘制内框和外框的旋转矩形。
- Args:
- image_path (str): 原始图片的文件路径。
- inner_box_file (str): 包含内框坐标的JSON文件路径。
- outer_box_file (str): 包含外框坐标的JSON文件路径。
- output_path (str, optional): 如果提供,结果图片将被保存到此路径。
- 默认为None,不保存。
- """
- # 1. 读取图片
- image = cv2.imread(image_path)
- if image is None:
- print(f"错误: 无法读取图片 -> {image_path}")
- return
- print(f"成功加载图片: {image_path}")
- # 2. 读取坐标点
- inner_points = get_points_from_file(inner_box_file)
- outer_points = get_points_from_file(outer_box_file)
- if inner_points is None or outer_points is None:
- print("因无法加载坐标点,程序终止。")
- return
- # 定义颜色 (BGR格式)
- OUTER_BOX_COLOR = (0, 255, 0) # 绿色
- INNER_BOX_COLOR = (0, 0, 255) # 红色
- THICKNESS = 10 # 可以根据你的图片分辨率调整线宽
- # 3. 处理并绘制外框
- # 将点列表转换为OpenCV需要的NumPy数组
- outer_contour = np.array(outer_points, dtype=np.int32)
- # 计算最小面积旋转矩形
- outer_rect = cv2.minAreaRect(outer_contour)
- # 获取矩形的4个角点
- outer_box_corners = cv2.boxPoints(outer_rect)
- # 转换为整数,以便绘制
- outer_box_corners_int = np.intp(outer_box_corners)
- # 在图片上绘制轮廓
- cv2.drawContours(image, [outer_box_corners_int], 0, OUTER_BOX_COLOR, THICKNESS)
- print("已绘制外框 (绿色)。")
- # 4. 处理并绘制内框
- inner_contour = np.array(inner_points, dtype=np.int32)
- inner_rect = cv2.minAreaRect(inner_contour)
- inner_box_corners = cv2.boxPoints(inner_rect)
- inner_box_corners_int = np.intp(inner_box_corners)
- cv2.drawContours(image, [inner_box_corners_int], 0, INNER_BOX_COLOR, THICKNESS)
- print("已绘制内框 (红色)。")
- # 5. 保存结果 (如果指定了路径)
- if output_path:
- cv2.imwrite(output_path, image)
- print(f"结果已保存到: {output_path}")
- # 6. 显示结果
- # OpenCV使用BGR,Matplotlib使用RGB,需要转换颜色通道
- image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- # 使用Matplotlib显示,因为它在各种环境中(如Jupyter)表现更好
- plt.figure(figsize=(10, 15)) # 调整显示窗口大小
- plt.imshow(image_rgb)
- plt.title('旋转框可视化 (外框: 绿色, 内框: 红色)')
- plt.axis('off') # 不显示坐标轴
- plt.show()
- def analyze_centering_rotated(inner_points: Union[str, List], outer_points: Union[str, List], ):
- """
- 使用旋转矩形进行最精确的分析, 包括定向边距和精确的浮点数比值。
- """
- if isinstance(inner_points, str):
- inner_points = get_points_from_file(inner_points)
- if isinstance(outer_points, str):
- outer_points = get_points_from_file(outer_points)
- # 将点列表转换为OpenCV需要的NumPy数组格式
- inner_contour = np.array(inner_points, dtype=np.int32)
- outer_contour = np.array(outer_points, dtype=np.int32)
- # 计算最小面积的旋转矩形
- # 结果格式: ((中心点x, 中心点y), (宽度, 高度), 旋转角度)
- inner_rect = cv2.minAreaRect(inner_contour)
- outer_rect = cv2.minAreaRect(outer_contour)
- # 获取矩形的4个角点, 并转化为坐标
- outer_box_corners = cv2.boxPoints(outer_rect)
- outer_box_corners_int = np.intp(outer_box_corners).tolist()
- inner_box_corners = cv2.boxPoints(inner_rect)
- inner_box_corners_int = np.intp(inner_box_corners).tolist()
- # --- 1. 标准化矩形尺寸,确保宽度总是长边 ---
- def standardize_rect(rect):
- (cx, cy), (w, h), angle = rect
- if w < h:
- # 如果宽度小于高度,交换它们,并调整角度
- w, h = h, w
- angle += 90
- return (cx, cy), (w, h), angle
- inner_center, inner_dims, inner_angle = standardize_rect(inner_rect)
- outer_center, outer_dims, outer_angle = standardize_rect(outer_rect)
- print("\n--- 基于旋转矩形的精确分析 ---")
- print(
- f"内框 (标准化后): 中心=({inner_center[0]:.1f}, {inner_center[1]:.1f}), 尺寸=({inner_dims[0]:.1f}, {inner_dims[1]:.1f}), 角度={inner_angle:.1f}°")
- print(
- f"外框 (标准化后): 中心=({outer_center[0]:.1f}, {outer_center[1]:.1f}), 尺寸=({outer_dims[0]:.1f}, {outer_dims[1]:.1f}), 角度={outer_angle:.1f}°")
- # --- 2. 评估居中度 (基于中心点) ---
- offset_x_abs = abs(inner_center[0] - outer_center[0])
- offset_y_abs = abs(inner_center[1] - outer_center[1])
- print(f"\n[居中度] 图像坐标系绝对中心偏移: 水平={offset_x_abs:.2f} px | 垂直={offset_y_abs:.2f} px")
- # --- 3. 评估平行度 ---
- angle_diff = abs(inner_angle - outer_angle)
- # 处理角度环绕问题 (例如 -89° 和 89° 其实只差 2°)
- angle_diff = min(angle_diff, 180 - angle_diff)
- print(f"[平行度] 角度差异: {angle_diff:.2f}° (值越小,内外框越平行)")
- # --- 4. 计算定向边距和比值 (核心部分) ---
- # 计算从外框中心指向内框中心的向量
- center_delta_vec = (inner_center[0] - outer_center[0], inner_center[1] - outer_center[1])
- # 将外框的旋转角度转换为弧度,用于三角函数计算
- angle_rad = math.radians(outer_angle)
- # 计算外框自身的坐标轴单位向量(相对于图像坐标系)
- # local_x_axis: 沿着外框宽度的方向向量
- # local_y_axis: 沿着外框高度的方向向量
- local_x_axis = (math.cos(angle_rad), math.sin(angle_rad))
- local_y_axis = (-math.sin(angle_rad), math.cos(angle_rad))
- # 使用点积 (dot product) 将中心偏移向量投影到外框的局部坐标轴上
- # 这能告诉我们,内框中心相对于外框中心,在“卡片自己的水平和垂直方向上”移动了多少
- offset_along_width = center_delta_vec[0] * local_x_axis[0] + center_delta_vec[1] * local_x_axis[1]
- offset_along_height = center_delta_vec[0] * local_y_axis[0] + center_delta_vec[1] * local_y_axis[1]
- # 计算水平和垂直方向上的总边距
- total_horizontal_margin = outer_dims[0] - inner_dims[0]
- total_vertical_margin = outer_dims[1] - inner_dims[1]
- # 根据投影的偏移量来分配总边距
- # 理想情况下,偏移为0,左右/上下边距各分一半
- # 如果有偏移,一侧增加,另一侧减少
- margin_left = (total_horizontal_margin / 2) - offset_along_width
- margin_right = (total_horizontal_margin / 2) + offset_along_width
- margin_top = (total_vertical_margin / 2) - offset_along_height
- margin_bottom = (total_vertical_margin / 2) + offset_along_height
- # print("\n[定向边距分析 (沿卡片方向)]")
- # print(f"水平边距 (像素): 左={margin_left:.1f} | 右={margin_right:.1f}")
- # print(f"垂直边距 (像素): 上={margin_top:.1f} | 下={margin_bottom:.1f}")
- #
- # print("\n[精确边距比值分析]")
- # # 直接展示浮点数比值
- # print(f"水平比值 (左:右) = {margin_left:.2f} : {margin_right:.2f}")
- # print(f"垂直比值 (上:下) = {margin_top:.2f} : {margin_bottom:.2f}")
- # 为了更直观,也可以计算一个百分比
- if total_horizontal_margin > 0:
- left_percent = (margin_left / total_horizontal_margin) * 100
- right_percent = (margin_right / total_horizontal_margin) * 100
- print(f"水平边距分布: 左 {left_percent:.1f}% | 右 {right_percent:.1f}%")
- if total_vertical_margin > 0:
- top_percent = (margin_top / total_vertical_margin) * 100
- bottom_percent = (margin_bottom / total_vertical_margin) * 100
- print(f"垂直边距分布: 上 {top_percent:.1f}% | 下 {bottom_percent:.1f}%")
- return ((left_percent, right_percent),
- (top_percent, bottom_percent),
- angle_diff), inner_box_corners_int, outer_box_corners_int
- def formate_center_data(center_result,
- inner_data: dict, outer_data: dict,
- inner_rect_points: List, outer_rect_points: List):
- data = {
- "box_result": {
- "center_inference": {
- "angel_diff": center_result[2],
- "center_left": center_result[0][0],
- "center_right": center_result[0][1],
- "center_top": center_result[1][0],
- "center_bottom": center_result[1][1]
- }
- }
- }
- data['box_result']['inner_box'] = inner_data
- data['box_result']['outer_box'] = outer_data
- data['box_result']['inner_box']['shapes'][0]['rect_box'] = inner_rect_points
- data['box_result']['outer_box']['shapes'][0]['rect_box'] = outer_rect_points
- return data
- # if __name__ == "__main__":
- # img_path = r"C:\Code\ML\Project\CheckCardBoxAndDefectServer\temp\250805_pokemon_0001.jpg"
- # inner_file_path = r"C:\Code\ML\Project\CheckCardBoxAndDefectServer\temp\inner\250805_pokemon_0001.json"
- # outer_file_path = r"C:\Code\ML\Project\CheckCardBoxAndDefectServer\temp\outer\250805_pokemon_0001.json"
- #
- # inner_pts = get_points_from_file(inner_file_path)
- # print(inner_pts)
- # print(type(inner_pts))
- #
- # result = analyze_centering_rotated(inner_file_path, outer_file_path)
- # print(result)
- # draw_rotated_bounding_boxes(img_path, inner_file_path, outer_file_path)
|