|
|
@@ -0,0 +1,213 @@
|
|
|
+import glob
|
|
|
+
|
|
|
+import gradio as gr
|
|
|
+import os
|
|
|
+import zipfile
|
|
|
+import tempfile
|
|
|
+import time
|
|
|
+from utils.Train_resnet import load_param
|
|
|
+from utils.MyOnnxYolo import MyOnnxYolo
|
|
|
+from utils.MyModel import MyModel
|
|
|
+from utils.preview_img import preview_img_dir
|
|
|
+from Config import Config
|
|
|
+
|
|
|
+# 用于存储已创建的目录名称
|
|
|
+config = Config()
|
|
|
+data_dir = config.data_dir
|
|
|
+model_dir = config.model_dir
|
|
|
+
|
|
|
+os.makedirs(data_dir, exist_ok=True)
|
|
|
+data_list = os.listdir(data_dir)
|
|
|
+model_id_list = sorted(os.listdir(model_dir))
|
|
|
+
|
|
|
+global_yolo_model = None
|
|
|
+global_cls_model = None
|
|
|
+
|
|
|
+
|
|
|
+def process_zip(name, zip_file, progress=gr.Progress()):
|
|
|
+ global data_list
|
|
|
+
|
|
|
+ if not name.strip():
|
|
|
+ return "Error: 需要输入数据集名称.", gr.update()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 创建一个以名称命名的目录
|
|
|
+ dir_path = os.path.join(data_dir, name)
|
|
|
+ os.makedirs(dir_path, exist_ok=True)
|
|
|
+
|
|
|
+ # 获取 ZIP 文件中的文件列表
|
|
|
+ with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
|
|
+ file_list = zip_ref.namelist()
|
|
|
+ total_files = len(file_list)
|
|
|
+
|
|
|
+ # 解压 ZIP 文件到该目录,同时更新进度条
|
|
|
+ for i, file in enumerate(file_list):
|
|
|
+ zip_ref.extract(file, dir_path)
|
|
|
+ progress((i + 1) / total_files, f"Extracting file {i + 1} of {total_files}")
|
|
|
+
|
|
|
+ # 添加新目录到列表中
|
|
|
+ if name not in data_list:
|
|
|
+ data_list.append(name)
|
|
|
+
|
|
|
+ # 返回解压后的文件列表和成功消息
|
|
|
+ files = os.listdir(dir_path)
|
|
|
+ return (f"Extraction successful!\n\nFiles extracted to directory '{name}':\n" + "\n".join(files),
|
|
|
+ gr.update(choices=data_list, value=name))
|
|
|
+
|
|
|
+ except zipfile.BadZipFile:
|
|
|
+ return "Error: The uploaded file is not a valid ZIP file.", gr.update()
|
|
|
+ except PermissionError:
|
|
|
+ return "Error: Permission denied. Unable to create directory or extract files.", gr.update()
|
|
|
+ except Exception as e:
|
|
|
+ return f"Error: An unexpected error occurred: {str(e)}", gr.update()
|
|
|
+
|
|
|
+
|
|
|
+def validate_name(name):
|
|
|
+ if name.strip():
|
|
|
+ return gr.update(visible=False), gr.update(interactive=True)
|
|
|
+ else:
|
|
|
+ return gr.update(visible=True, value="Directory name is required"), gr.update(interactive=False)
|
|
|
+
|
|
|
+
|
|
|
+# def update_epoch_display(epoch):
|
|
|
+# return f"Current epoch: {epoch}"
|
|
|
+
|
|
|
+def start_training(epoch, data_dir_name, model_dir_name, freeze_slider, learn_rate, momentum, decay):
|
|
|
+ global global_yolo_model, global_cls_model
|
|
|
+ # 释放内存
|
|
|
+ global_yolo_model = None
|
|
|
+ global_cls_model = None
|
|
|
+
|
|
|
+ print(epoch, data_dir_name, model_dir_name, freeze_slider, learn_rate, momentum, decay)
|
|
|
+
|
|
|
+ train_data_path = os.path.join(data_dir, data_dir_name)
|
|
|
+
|
|
|
+ if model_dir_name is not None:
|
|
|
+ model_dir_path = os.path.join(model_dir, model_dir_name)
|
|
|
+ model_path = glob.glob(os.path.join(model_dir_path, "*.pt"))[0]
|
|
|
+ else:
|
|
|
+ model_path = None
|
|
|
+
|
|
|
+ load_param(epoch=epoch, data_dir=train_data_path, model_path=model_path,
|
|
|
+ freeze=freeze_slider, learn_rate=learn_rate, momentum=momentum, decay=decay)
|
|
|
+ # time.sleep(epoch * 0.2) # 模拟短暂的训练过程
|
|
|
+ return "训练结束", gr.update()
|
|
|
+
|
|
|
+
|
|
|
+def predict_img(predict_data_dir_name, predict_model_dir_name, img):
|
|
|
+ global global_yolo_model, global_cls_model
|
|
|
+ print("predict_img: ", data_dir_name, model_dir_name)
|
|
|
+ if predict_data_dir_name is None or predict_model_dir_name is None:
|
|
|
+ return "2个参数为必选项"
|
|
|
+
|
|
|
+ cls_list = sorted(os.listdir(os.path.join(data_dir, predict_data_dir_name, 'train')))
|
|
|
+ print(cls_list)
|
|
|
+
|
|
|
+ model_dir_path = os.path.join(model_dir, predict_model_dir_name)
|
|
|
+ model_path = glob.glob(os.path.join(model_dir_path, "*.pt"))[0]
|
|
|
+
|
|
|
+ if global_yolo_model is None:
|
|
|
+ global_yolo_model = MyOnnxYolo(config.yolo_model_path)
|
|
|
+ if global_cls_model is None:
|
|
|
+ global_cls_model = MyModel(model_path)
|
|
|
+
|
|
|
+ global_yolo_model.set_result(img)
|
|
|
+ card_img = global_yolo_model.get_max_img(cls_id=0)
|
|
|
+ cls_id = global_cls_model.run(card_img)
|
|
|
+
|
|
|
+ return cls_list[cls_id], gr.update()
|
|
|
+
|
|
|
+
|
|
|
+# 创建 Gradio 界面
|
|
|
+with gr.Blocks() as iface:
|
|
|
+ gr.Markdown("# 分类训练")
|
|
|
+
|
|
|
+ with gr.Tabs():
|
|
|
+ with gr.TabItem("上传ZIP数据"):
|
|
|
+ gr.Markdown(
|
|
|
+ '''
|
|
|
+ 输入数数据名称, 并上传zip数据, 点击解压zip <br>
|
|
|
+ 如果是原始数据, 请将目录结构准备为: <br>
|
|
|
+ ```python
|
|
|
+ ---数据集名称:
|
|
|
+ --train:
|
|
|
+ -分类1:{图片1,图片2, ...},
|
|
|
+ -分类2:{图片1,图片2, ...},
|
|
|
+ ......
|
|
|
+ ```
|
|
|
+ 之后进行数据处理后训练
|
|
|
+ '''
|
|
|
+ )
|
|
|
+
|
|
|
+ with gr.Row():
|
|
|
+ name_input = gr.Textbox(label="输入数据集名称", placeholder="Enter a name for the directory")
|
|
|
+ file_input = gr.File(label="解压ZIP数据")
|
|
|
+
|
|
|
+ error_output = gr.Markdown(visible=False)
|
|
|
+ submit_btn = gr.Button("解压 ZIP", interactive=False)
|
|
|
+
|
|
|
+ result_output = gr.Textbox(label="结果")
|
|
|
+
|
|
|
+ with gr.TabItem("预览, 处理数据"):
|
|
|
+ gr.Markdown(
|
|
|
+ "预览部分训练数据, 如果数据未处理, 那么进行处理, ")
|
|
|
+ with gr.Row():
|
|
|
+ with gr.Column():
|
|
|
+ preview_data_dir_name = gr.Dropdown(label="选择数据集", choices=data_list,
|
|
|
+ interactive=True)
|
|
|
+ preview_button = gr.Button("预览部分图片", variant='primary')
|
|
|
+ preview_gallery = gr.Gallery(label="部分训练集图片")
|
|
|
+
|
|
|
+ with gr.TabItem("训练模型"):
|
|
|
+ data_list = os.listdir(data_dir)
|
|
|
+ model_id_list = sorted(os.listdir(model_dir))
|
|
|
+ gr.Markdown("设置参数训练模型, 注意模型ID不选的话则重新训练")
|
|
|
+
|
|
|
+ with gr.Row():
|
|
|
+ data_dir_name = gr.Dropdown(label="训练的数据集", choices=data_list,
|
|
|
+ interactive=True)
|
|
|
+ epoch_slider = gr.Slider(minimum=5, maximum=50, value=10, step=1, label="轮次")
|
|
|
+ # epoch_display = gr.Markdown("Current epoch: 10")
|
|
|
+
|
|
|
+ with gr.Row():
|
|
|
+ model_dir_name = gr.Dropdown(label="模型ID", choices=model_id_list)
|
|
|
+ freeze_slider = gr.Slider(minimum=0, maximum=7, value=7, step=1, label="冻结参数层")
|
|
|
+
|
|
|
+ with gr.Row():
|
|
|
+ learn_rate = gr.Number(label="学习率", value=0.01)
|
|
|
+ momentum = gr.Number(label="动量", value=0.9)
|
|
|
+ decay = gr.Number(label="衰减率", value=0.7)
|
|
|
+
|
|
|
+ # epoch_slider.change(update_epoch_display, inputs=[epoch_slider], outputs=[epoch_display])
|
|
|
+ train_button = gr.Button("开始训练")
|
|
|
+ training_result = gr.Textbox(label="训练结果")
|
|
|
+
|
|
|
+ with gr.TabItem("预测单张图片"):
|
|
|
+ data_list = os.listdir(data_dir)
|
|
|
+ model_id_list = sorted(os.listdir(model_dir))
|
|
|
+
|
|
|
+ gr.Markdown("输入一张图片返回预测结果")
|
|
|
+ with gr.Row():
|
|
|
+ img = gr.Image(label="上传图片")
|
|
|
+
|
|
|
+ with gr.Row():
|
|
|
+ predict_data_dir_name = gr.Dropdown(label="训练的数据集", choices=data_list,
|
|
|
+ interactive=True)
|
|
|
+ predict_model_dir_name = gr.Dropdown(label="模型ID", choices=model_id_list)
|
|
|
+
|
|
|
+ predict_button = gr.Button("预测图片")
|
|
|
+ predict_result = gr.Textbox(label="预测结果")
|
|
|
+
|
|
|
+ name_input.change(validate_name, inputs=[name_input], outputs=[error_output, submit_btn])
|
|
|
+ submit_btn.click(process_zip, inputs=[name_input, file_input], outputs=[result_output, data_dir_name])
|
|
|
+ preview_button.click(preview_img_dir, inputs=preview_data_dir_name, outputs=preview_gallery)
|
|
|
+ train_button.click(start_training,
|
|
|
+ inputs=[epoch_slider, data_dir_name,
|
|
|
+ model_dir_name, freeze_slider, learn_rate, momentum, decay],
|
|
|
+ outputs=[training_result])
|
|
|
+ predict_button.click(predict_img,
|
|
|
+ inputs=[predict_data_dir_name, predict_model_dir_name, img],
|
|
|
+ outputs=[predict_result])
|
|
|
+
|
|
|
+# 启动界面
|
|
|
+iface.launch(server_name="0.0.0.0")
|