score_service.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. import cv2
  2. from app.core.config import settings
  3. from app.core.logger import get_logger
  4. from app.services.defect_service import DefectInferenceService
  5. from app.services.card_rectify_and_center import CardRectifyAndCenter
  6. from app.utils.score_inference.CardScorer import CardScorer
  7. import numpy as np
  8. import json
  9. logger = get_logger(__name__)
  10. class ScoreService:
  11. def __init__(self):
  12. self.scoring_config_path = settings.SCORE_CONFIG_PATH
  13. self.card_scorer = CardScorer(config_path=self.scoring_config_path)
  14. self.defect_service = DefectInferenceService()
  15. self.rectify_center_service = CardRectifyAndCenter()
  16. def score_inference(self, score_type: str, is_reflect_card: bool,
  17. img_bgr: np.ndarray) -> dict:
  18. logger.info("开始进行卡片居中和转正")
  19. img_bgr = self.rectify_center_service.rectify_and_center(img_bgr)
  20. imageHeight, imageWidth = img_bgr.shape[:2]
  21. logger.info("开始进行卡片分数推理")
  22. if score_type == 'front_corner_edge' or score_type == 'front_face':
  23. center_data = self.defect_service.defect_inference("pokemon_front_card_center", img_bgr.copy())
  24. else:
  25. center_data = self.defect_service.defect_inference("pokemon_back_card_center", img_bgr.copy())
  26. if is_reflect_card:
  27. if score_type == 'front_corner_edge':
  28. defect_data = self.defect_service.defect_inference('pokemon_front_corner_reflect_defect',
  29. img_bgr.copy())
  30. elif score_type == 'front_face':
  31. defect_data = self.defect_service.defect_inference('pokemon_front_face_reflect_defect', img_bgr.copy())
  32. elif score_type == 'back_corner_edge':
  33. defect_data = self.defect_service.defect_inference('pokemon_back_corner_defect', img_bgr.copy())
  34. elif score_type == 'back_face':
  35. defect_data = self.defect_service.defect_inference('pokemon_back_face_defect', img_bgr.copy())
  36. else:
  37. return {}
  38. else:
  39. if score_type == 'front_corner_edge':
  40. defect_data = self.defect_service.defect_inference('pokemon_front_corner_no_reflect_defect',
  41. img_bgr.copy())
  42. elif score_type == 'front_face':
  43. defect_data = self.defect_service.defect_inference('pokemon_front_face_no_reflect_defect',
  44. img_bgr.copy())
  45. elif score_type == 'back_corner_edge':
  46. defect_data = self.defect_service.defect_inference('pokemon_back_corner_defect', img_bgr.copy())
  47. elif score_type == 'back_face':
  48. defect_data = self.defect_service.defect_inference('pokemon_back_face_defect', img_bgr.copy())
  49. else:
  50. return {}
  51. logger.info("模型推理结束, 开始计算分数")
  52. if score_type == 'front_corner_edge' or score_type == 'front_face':
  53. card_aspect = "front"
  54. else:
  55. card_aspect = "back"
  56. if score_type == 'front_corner_edge' or score_type == 'back_corner_edge':
  57. card_defect_type = "corner_edge"
  58. else:
  59. card_defect_type = "face"
  60. if card_defect_type == 'corner_edge':
  61. center_score_data = self.card_scorer.calculate_centering_score(card_aspect, center_data, True)
  62. # 先计算角的分数, 会把分数写入json, 然后传入刚写好的, 继续写边的分数
  63. corner_score_data = self.card_scorer.calculate_defect_score('corner', card_aspect, defect_data, True)
  64. defect_score_data = self.card_scorer.calculate_defect_score('edge', card_aspect, corner_score_data, True)
  65. elif card_defect_type == 'face':
  66. center_score_data = {}
  67. defect_score_data = self.card_scorer.calculate_defect_score('face', card_aspect, defect_data, True)
  68. else:
  69. return {}
  70. result_json = self.card_scorer.formate_one_card_result(center_score_data, defect_score_data,
  71. card_defect_type=card_defect_type,
  72. card_aspect=card_aspect,
  73. imageHeight=imageHeight,
  74. imageWidth=imageWidth)
  75. temp_score_json_path = settings.TEMP_WORK_DIR / f'{score_type}_score.json'
  76. with open(temp_score_json_path, 'w', encoding='utf-8') as f:
  77. json.dump(result_json, f, ensure_ascii=False, indent=2)
  78. logger.info("分数推理完成 ")
  79. return result_json
  80. def recalculate_defect_score(self, score_type: str, json_data: dict):
  81. center_json_data = json_data["result"]['center_result']
  82. defect_json_data = json_data["result"]['defect_result']
  83. imageHeight = json_data["result"].get('imageHeight', 0)
  84. imageWidth = json_data["result"].get('imageWidth', 0)
  85. # 边角和面 类型分类
  86. if score_type == 'front_corner_edge' or score_type == 'back_corner_edge':
  87. inference_type = "corner_edge"
  88. else:
  89. inference_type = "face"
  90. # 正反面类型分类
  91. if score_type == 'front_corner_edge' or score_type == 'front_face':
  92. card_aspect = "front"
  93. else:
  94. card_aspect = "back"
  95. logger.info("开始进行缺陷信息重计算")
  96. defect_data = self.defect_service.re_inference_from_json(inference_type=inference_type,
  97. center_json=center_json_data,
  98. defect_json=defect_json_data)
  99. logger.info("开始重新计算分数")
  100. if inference_type == 'corner_edge':
  101. logger.info("开始进行居中信息重计算")
  102. center_data = self.defect_service.re_inference_from_json(inference_type="center",
  103. center_json=center_json_data,
  104. defect_json=defect_json_data)
  105. center_score_data = self.card_scorer.calculate_centering_score(card_aspect, center_data, True)
  106. # 先计算角的分数, 会把分数写入json, 然后传入刚写好的, 继续写边的分数
  107. corner_score_data = self.card_scorer.calculate_defect_score('corner', card_aspect, defect_data, True)
  108. defect_score_data = self.card_scorer.calculate_defect_score('edge', card_aspect, corner_score_data, True)
  109. elif inference_type == 'face':
  110. # 面类型不计算居中
  111. center_score_data = {}
  112. defect_score_data = self.card_scorer.calculate_defect_score('face', card_aspect, defect_data, True)
  113. else:
  114. return {}
  115. result_json = self.card_scorer.formate_one_card_result(center_score_data, defect_score_data,
  116. card_defect_type=inference_type,
  117. card_aspect=card_aspect,
  118. imageHeight=imageHeight,
  119. imageWidth=imageWidth)
  120. temp_score_json_path = settings.TEMP_WORK_DIR / f're_{score_type}_score.json'
  121. with open(temp_score_json_path, 'w', encoding='utf-8') as f:
  122. json.dump(result_json, f, ensure_ascii=False, indent=2)
  123. logger.info("分数推理完成 ")
  124. return result_json