defect_service.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. import cv2
  2. import numpy as np
  3. from ..core.model_loader import get_predictor
  4. from app.utils.defect_inference.CardDefectAggregator import CardDefectAggregator
  5. from app.utils.defect_inference.arean_anylize_draw import DefectProcessor, DrawingParams
  6. from app.utils.defect_inference.AnalyzeCenter import (
  7. analyze_centering_rotated, analyze_centering_rect, formate_center_data)
  8. from app.utils.defect_inference.DrawCenterInfo import draw_boxes_and_center_info
  9. from app.utils.defect_inference.ClassifyEdgeCorner import ClassifyEdgeCorner
  10. from app.utils.json_data_formate import formate_face_data, formate_add_edit_type
  11. from app.utils.defect_inference.FilterOutsideDefects import FilterOutsideDefects
  12. from app.utils.simplify_points import SimplifyPoints
  13. from app.core.config import settings
  14. from app.core.logger import get_logger
  15. import json
  16. logger = get_logger(__name__)
  17. class DefectInferenceService:
  18. def defect_inference(self, inference_type: str, img_bgr: np.ndarray,
  19. is_draw_image=True) -> dict:
  20. """
  21. 执行卡片识别推理。
  22. Args:
  23. inference_type: 模型类型 (e.g., 'outer_box').
  24. img_bgr: 图像。
  25. Returns:
  26. 一个包含推理结果的字典。
  27. """
  28. simplifyPoints = SimplifyPoints()
  29. outside_filter = FilterOutsideDefects(expansion_pixel=30)
  30. # 面
  31. if (inference_type == "pokemon_front_face_no_reflect_defect"
  32. or inference_type == "pokemon_front_face_reflect_defect"
  33. or inference_type == "pokemon_back_face_defect"):
  34. # 1. 获取对应的预测器实例
  35. predictor = get_predictor(inference_type)
  36. # 3. 调用我们新加的 predict_from_image 方法进行推理
  37. # result = predictor.predict_from_image(img_bgr)
  38. # 3. 实例化我们聚合器,传入预测器
  39. aggregator = CardDefectAggregator(
  40. predictor=predictor,
  41. tile_size=512,
  42. overlap_ratio=0.1, # 10% 重叠
  43. )
  44. json_data = aggregator.process_image(
  45. image=img_bgr,
  46. mode='face'
  47. )
  48. # 简化点数
  49. for shapes in json_data["shapes"]:
  50. points = shapes["points"]
  51. num1 = len(points)
  52. simplify_points = simplifyPoints.simplify_points(points)
  53. shapes["points"] = simplify_points
  54. new_num1 = len(simplify_points)
  55. logger.info(f"num: {num1}, new_num1: {new_num1}")
  56. logger.info("开始执行外框过滤...")
  57. try:
  58. # 1. 因为面原本没有外框推理,这里需要专门加载并推理一次
  59. predictor_outer = get_predictor("outer_box")
  60. outer_result = predictor_outer.predict_from_image(img_bgr)
  61. # 2. 执行过滤
  62. json_data = outside_filter.execute(json_data, outer_result)
  63. except Exception as e:
  64. logger.error(f"面流程外框过滤失败: {e}")
  65. merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  66. with open(merge_json_path, 'w', encoding='utf-8') as f:
  67. json.dump(json_data, f, ensure_ascii=False, indent=4)
  68. logger.info(f"合并结束")
  69. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  70. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.json'
  71. if is_draw_image:
  72. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  73. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  74. drawing_params_with_rect)
  75. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.jpg'
  76. cv2.imwrite(temp_img_path, drawn_image)
  77. else:
  78. area_json = processor.analyze_from_json(json_data)
  79. face_json_result = formate_face_data(area_json)
  80. face_json_result = formate_add_edit_type(face_json_result)
  81. with open(area_json_path, 'w', encoding='utf-8') as f:
  82. json.dump(face_json_result, f, ensure_ascii=False, indent=2)
  83. logger.info("面的面积计算结束")
  84. return face_json_result
  85. # 边角
  86. elif (inference_type == "pokemon_front_corner_no_reflect_defect"
  87. or inference_type == "pokemon_front_corner_reflect_defect"
  88. or inference_type == "pokemon_back_corner_defect"):
  89. predictor = get_predictor(inference_type)
  90. aggregator = CardDefectAggregator(
  91. predictor=predictor,
  92. tile_size=512,
  93. overlap_ratio=0.1, # 10% 重叠
  94. )
  95. json_data = aggregator.process_image(
  96. image=img_bgr,
  97. mode='edge'
  98. )
  99. # 简化点数
  100. for shapes in json_data["shapes"]:
  101. points = shapes["points"]
  102. num1 = len(points)
  103. simplify_points = simplifyPoints.simplify_points(points)
  104. shapes["points"] = simplify_points
  105. new_num1 = len(simplify_points)
  106. logger.info(f"num: {num1}, new_num1: {new_num1}")
  107. # merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  108. # with open(merge_json_path, 'w', encoding='utf-8') as f:
  109. # json.dump(json_data, f, ensure_ascii=False, indent=4)
  110. # logger.info(f"合并结束")
  111. logger.info("开始执行外框过滤...")
  112. # 外框推理
  113. predictor_outer = get_predictor("outer_box")
  114. outer_result = predictor_outer.predict_from_image(img_bgr)
  115. # 2. 执行过滤
  116. json_data = outside_filter.execute(json_data, outer_result)
  117. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  118. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.json'
  119. if is_draw_image:
  120. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  121. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  122. drawing_params_with_rect)
  123. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.jpg'
  124. cv2.imwrite(temp_img_path, drawn_image)
  125. else:
  126. area_json: dict = processor.analyze_from_json(json_data)
  127. logger.info("边角缺陷面积计算结束")
  128. classifier = ClassifyEdgeCorner(settings.PIXEL_RESOLUTION, settings.CORNER_SIZE_MM)
  129. edge_corner_data = classifier.classify_defects_location(area_json, outer_result)
  130. edge_corner_data = formate_add_edit_type(edge_corner_data)
  131. with open(area_json_path, 'w', encoding='utf-8') as f:
  132. json.dump(edge_corner_data, f, ensure_ascii=False, indent=2)
  133. logger.info("边角面积计算结束")
  134. return edge_corner_data
  135. elif inference_type == "pokemon_front_card_center" \
  136. or inference_type == "pokemon_back_card_center":
  137. predictor_inner = get_predictor(settings.DEFECT_TYPE[inference_type]['inner_box'])
  138. predictor_outer = get_predictor(settings.DEFECT_TYPE[inference_type]['outer_box'])
  139. inner_result = predictor_inner.predict_from_image(img_bgr)
  140. outer_result = predictor_outer.predict_from_image(img_bgr)
  141. # temp_inner_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-inner_result.json'
  142. # temp_outer_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-outer_result.json'
  143. # with open(temp_inner_json_path, 'w', encoding='utf-8') as f:
  144. # json.dump(inner_result, f, ensure_ascii=False, indent=4)
  145. # with open(temp_outer_json_path, 'w', encoding='utf-8') as f:
  146. # json.dump(outer_result, f, ensure_ascii=False, indent=4)
  147. inner_points = inner_result['shapes'][0]['points']
  148. outer_points = outer_result['shapes'][0]['points']
  149. center_result, inner_rect_box, outer_rect_box = analyze_centering_rotated(inner_points, outer_points)
  150. # logger.info(f"inner_rect_box: {type(inner_rect_box)}, {inner_rect_box}")
  151. # logger.info(f"outer_rect_box: , {outer_rect_box}")
  152. logger.info("格式化居中数据")
  153. center_result = formate_center_data(center_result,
  154. inner_result, outer_result,
  155. inner_rect_box, outer_rect_box)
  156. draw_img = draw_boxes_and_center_info(img_bgr, center_result)
  157. temp_center_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-center_result.jpg'
  158. cv2.imwrite(temp_center_img_path, draw_img)
  159. temp_center_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-center_result.json'
  160. with open(temp_center_json_path, 'w', encoding='utf-8') as f:
  161. json.dump(center_result, f, ensure_ascii=False, indent=2)
  162. return center_result
  163. else:
  164. return {}
  165. # inference_type: center, face, corner_edge
  166. def re_inference_from_json(self, inference_type: str, center_json: dict, defect_json: dict) -> dict:
  167. inference_type_list = ["center", "face", "corner_edge"]
  168. if inference_type not in inference_type_list:
  169. logger.error(f"inference_type 只能为{inference_type_list}, 输入为{inference_type}")
  170. raise ValueError(f"inference_type 只能为{inference_type_list}, 输入为{inference_type}")
  171. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  172. # 对于面的图, 不计算居中相关, 这里得到的center_json 应该为 {}
  173. if inference_type == "face":
  174. area_json = processor.re_analyze_from_json(defect_json)
  175. face_json_result = formate_face_data(area_json)
  176. logger.info("面缺陷面积计算结束")
  177. return face_json_result
  178. inner_result = center_json['box_result']['inner_box']
  179. outer_result = center_json['box_result']['outer_box']
  180. if inference_type == "center":
  181. inner_rect = inner_result['shapes'][0]['rect_box']
  182. outer_rect = outer_result['shapes'][0]['rect_box']
  183. center_result, inner_rect_box, outer_rect_box = analyze_centering_rect(inner_rect, outer_rect)
  184. center_result = formate_center_data(center_result,
  185. inner_result, outer_result,
  186. inner_rect_box, outer_rect_box)
  187. return center_result
  188. elif inference_type == "corner_edge":
  189. area_json: dict = processor.re_analyze_from_json(defect_json)
  190. logger.info("边角缺陷面积计算结束")
  191. # 根据外框区分边和角
  192. classifier = ClassifyEdgeCorner(settings.PIXEL_RESOLUTION, settings.CORNER_SIZE_MM)
  193. edge_corner_data = classifier.classify_defects_location(area_json, outer_result)
  194. logger.info("边角面积计算结束")
  195. return edge_corner_data
  196. else:
  197. return {}
  198. # 创建一个单例服务
  199. # defect_service = DefectInferenceService()