defect_service.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. import cv2
  2. import numpy as np
  3. from ..core.model_loader import get_predictor
  4. from app.utils.defect_inference.CardDefectAggregator import CardDefectAggregator
  5. from app.utils.defect_inference.arean_anylize_draw import DefectProcessor, DrawingParams
  6. from app.utils.defect_inference.AnalyzeCenter import (
  7. analyze_centering_rotated, analyze_centering_rect, formate_center_data)
  8. from app.utils.defect_inference.DrawCenterInfo import draw_boxes_and_center_info
  9. from app.utils.defect_inference.ClassifyEdgeCorner import ClassifyEdgeCorner
  10. from app.utils.json_data_formate import formate_face_data, formate_add_edit_type
  11. from app.utils.defect_inference.FilterOutsideDefects import FilterOutsideDefects
  12. from app.utils.simplify_points import SimplifyPoints
  13. from app.core.config import settings
  14. from app.core.logger import get_logger
  15. import json
  16. logger = get_logger(__name__)
  17. class DefectInferenceService:
  18. def _filter_max_prob_shape(self, json_data: dict, tag: str = "unknown") -> dict:
  19. """
  20. 通用过滤函数:只保留 shapes 中 probability 最大的那一个。
  21. """
  22. if not json_data or 'shapes' not in json_data or not json_data['shapes']:
  23. return json_data
  24. shapes = json_data['shapes']
  25. if len(shapes) <= 1:
  26. return json_data
  27. # 按 probability 降序排列,取第一个
  28. best_shape = max(shapes, key=lambda x: x.get('probability', 0))
  29. logger.info(f"[{tag}] 过滤多余框: 原有 {len(shapes)} 个, 保留最大置信度 {best_shape.get('probability'):.4f}")
  30. json_data['shapes'] = [best_shape]
  31. return json_data
  32. def defect_inference(self, inference_type: str, img_bgr: np.ndarray,
  33. is_draw_image=True) -> dict:
  34. """
  35. 执行卡片识别推理。
  36. Args:
  37. inference_type: 模型类型 (e.g., 'outer_box').
  38. img_bgr: 图像。
  39. Returns:
  40. 一个包含推理结果的字典。
  41. """
  42. simplifyPoints = SimplifyPoints()
  43. outside_filter = FilterOutsideDefects(expansion_pixel=30)
  44. # 面
  45. if (inference_type == "pokemon_front_face_no_reflect_defect"
  46. or inference_type == "pokemon_front_face_reflect_defect"
  47. or inference_type == "pokemon_back_face_defect"
  48. or inference_type == "pokemon_back_face_ring_light_defect"
  49. or inference_type == "pokemon_front_face_reflect_ring_light_defect"):
  50. # 1. 获取对应的预测器实例
  51. predictor = get_predictor(inference_type)
  52. # 3. 调用我们新加的 predict_from_image 方法进行推理
  53. # result = predictor.predict_from_image(img_bgr)
  54. # 3. 实例化我们聚合器,传入预测器
  55. aggregator = CardDefectAggregator(
  56. predictor=predictor,
  57. tile_size=512,
  58. overlap_ratio=0.1, # 10% 重叠
  59. )
  60. json_data = aggregator.process_image(
  61. image=img_bgr,
  62. mode='face'
  63. )
  64. # 简化点数
  65. for shapes in json_data["shapes"]:
  66. points = shapes["points"]
  67. num1 = len(points)
  68. simplify_points = simplifyPoints.simplify_points(points)
  69. shapes["points"] = simplify_points
  70. new_num1 = len(simplify_points)
  71. logger.info(f"num: {num1}, new_num1: {new_num1}")
  72. logger.info("开始执行外框过滤...")
  73. try:
  74. # 1. 因为面原本没有外框推理,这里需要专门加载并推理一次
  75. predictor_outer = get_predictor("outer_box")
  76. outer_result = predictor_outer.predict_from_image(img_bgr)
  77. # 2. 执行过滤
  78. json_data = outside_filter.execute(json_data, outer_result)
  79. except Exception as e:
  80. logger.error(f"面流程外框过滤失败: {e}")
  81. merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  82. with open(merge_json_path, 'w', encoding='utf-8') as f:
  83. json.dump(json_data, f, ensure_ascii=False, indent=4)
  84. logger.info(f"合并结束")
  85. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  86. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.json'
  87. if is_draw_image:
  88. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  89. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  90. drawing_params_with_rect)
  91. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.jpg'
  92. cv2.imwrite(temp_img_path, drawn_image)
  93. else:
  94. area_json = processor.analyze_from_json(json_data)
  95. face_json_result = formate_face_data(area_json)
  96. face_json_result = formate_add_edit_type(face_json_result)
  97. with open(area_json_path, 'w', encoding='utf-8') as f:
  98. json.dump(face_json_result, f, ensure_ascii=False, indent=2)
  99. logger.info("面的面积计算结束")
  100. return face_json_result
  101. # 边角
  102. elif (inference_type == "pokemon_front_corner_no_reflect_defect"
  103. or inference_type == "pokemon_front_corner_reflect_defect"
  104. or inference_type == "pokemon_back_corner_defect"):
  105. predictor = get_predictor(inference_type)
  106. aggregator = CardDefectAggregator(
  107. predictor=predictor,
  108. tile_size=512,
  109. overlap_ratio=0.1, # 10% 重叠
  110. )
  111. json_data = aggregator.process_image(
  112. image=img_bgr,
  113. mode='edge'
  114. )
  115. # 简化点数
  116. for shapes in json_data["shapes"]:
  117. points = shapes["points"]
  118. num1 = len(points)
  119. simplify_points = simplifyPoints.simplify_points(points)
  120. shapes["points"] = simplify_points
  121. new_num1 = len(simplify_points)
  122. logger.info(f"num: {num1}, new_num1: {new_num1}")
  123. # merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  124. # with open(merge_json_path, 'w', encoding='utf-8') as f:
  125. # json.dump(json_data, f, ensure_ascii=False, indent=4)
  126. # logger.info(f"合并结束")
  127. logger.info("开始执行外框过滤...")
  128. # 外框推理
  129. predictor_outer = get_predictor("outer_box")
  130. outer_result = predictor_outer.predict_from_image(img_bgr)
  131. # 过滤外框,只留一个
  132. outer_result = self._filter_max_prob_shape(outer_result, tag="Corner流程-外框")
  133. # 2. 执行过滤, 去掉外框外的缺陷
  134. json_data = outside_filter.execute(json_data, outer_result)
  135. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  136. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.json'
  137. if is_draw_image:
  138. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  139. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  140. drawing_params_with_rect)
  141. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.jpg'
  142. cv2.imwrite(temp_img_path, drawn_image)
  143. else:
  144. area_json: dict = processor.analyze_from_json(json_data)
  145. logger.info("边角缺陷面积计算结束")
  146. classifier = ClassifyEdgeCorner(settings.PIXEL_RESOLUTION, settings.CORNER_SIZE_MM)
  147. edge_corner_data = classifier.classify_defects_location(area_json, outer_result)
  148. edge_corner_data = formate_add_edit_type(edge_corner_data)
  149. with open(area_json_path, 'w', encoding='utf-8') as f:
  150. json.dump(edge_corner_data, f, ensure_ascii=False, indent=2)
  151. logger.info("边角面积计算结束")
  152. return edge_corner_data
  153. elif inference_type == "pokemon_front_card_center" \
  154. or inference_type == "pokemon_back_card_center":
  155. predictor_inner = get_predictor(settings.DEFECT_TYPE[inference_type]['inner_box'])
  156. predictor_outer = get_predictor(settings.DEFECT_TYPE[inference_type]['outer_box'])
  157. inner_result = predictor_inner.predict_from_image(img_bgr)
  158. outer_result = predictor_outer.predict_from_image(img_bgr)
  159. # 过滤内框和外框,只留最大置信度的框
  160. inner_result = self._filter_max_prob_shape(inner_result, tag="Center流程-内框")
  161. outer_result = self._filter_max_prob_shape(outer_result, tag="Center流程-外框")
  162. # temp_inner_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-inner_result.json'
  163. # temp_outer_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-outer_result.json'
  164. # with open(temp_inner_json_path, 'w', encoding='utf-8') as f:
  165. # json.dump(inner_result, f, ensure_ascii=False, indent=4)
  166. # with open(temp_outer_json_path, 'w', encoding='utf-8') as f:
  167. # json.dump(outer_result, f, ensure_ascii=False, indent=4)
  168. inner_points = inner_result['shapes'][0]['points']
  169. outer_points = outer_result['shapes'][0]['points']
  170. center_result, inner_rect_box, outer_rect_box = analyze_centering_rotated(inner_points, outer_points)
  171. # logger.info(f"inner_rect_box: {type(inner_rect_box)}, {inner_rect_box}")
  172. # logger.info(f"outer_rect_box: , {outer_rect_box}")
  173. logger.info("格式化居中数据")
  174. center_result = formate_center_data(center_result,
  175. inner_result, outer_result,
  176. inner_rect_box, outer_rect_box)
  177. draw_img = draw_boxes_and_center_info(img_bgr, center_result)
  178. temp_center_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-center_result.jpg'
  179. cv2.imwrite(temp_center_img_path, draw_img)
  180. temp_center_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-center_result.json'
  181. with open(temp_center_json_path, 'w', encoding='utf-8') as f:
  182. json.dump(center_result, f, ensure_ascii=False, indent=2)
  183. return center_result
  184. else:
  185. return {}
  186. # inference_type: center, face, corner_edge
  187. def re_inference_from_json(self, inference_type: str, center_json: dict, defect_json: dict) -> dict:
  188. inference_type_list = ["center", "face", "corner_edge"]
  189. if inference_type not in inference_type_list:
  190. logger.error(f"inference_type 只能为{inference_type_list}, 输入为{inference_type}")
  191. raise ValueError(f"inference_type 只能为{inference_type_list}, 输入为{inference_type}")
  192. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  193. # 对于面的图, 不计算居中相关, 这里得到的center_json 应该为 {}
  194. if inference_type == "face":
  195. area_json = processor.re_analyze_from_json(defect_json)
  196. face_json_result = formate_face_data(area_json)
  197. logger.info("面缺陷面积计算结束")
  198. return face_json_result
  199. inner_result = center_json['box_result']['inner_box']
  200. outer_result = center_json['box_result']['outer_box']
  201. if inference_type == "center":
  202. logger.info("居中重计算")
  203. inner_rect = inner_result['shapes'][0]['rect_box']
  204. outer_rect = outer_result['shapes'][0]['rect_box']
  205. center_result, inner_rect_box, outer_rect_box = analyze_centering_rect(inner_rect, outer_rect)
  206. center_result = formate_center_data(center_result,
  207. inner_result, outer_result,
  208. inner_rect_box, outer_rect_box)
  209. return center_result
  210. elif inference_type == "corner_edge":
  211. area_json: dict = processor.re_analyze_from_json(defect_json)
  212. logger.info("边角缺陷面积计算结束")
  213. # 根据外框区分边和角
  214. classifier = ClassifyEdgeCorner(settings.PIXEL_RESOLUTION, settings.CORNER_SIZE_MM)
  215. edge_corner_data = classifier.classify_defects_location(area_json, outer_result)
  216. logger.info("边角面积计算结束")
  217. return edge_corner_data
  218. else:
  219. return {}
  220. # 创建一个单例服务
  221. # defect_service = DefectInferenceService()