config.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. from pathlib import Path
  2. from typing import Dict, List
  3. from enum import Enum
  4. # 定义一个模型的配置结构
  5. class CardModelConfig:
  6. pth_path: str
  7. class_dict: dict
  8. img_size: dict
  9. confidence: float
  10. input_channels: int
  11. class Settings:
  12. API_Inference_prefix: str = "/api/card_inference"
  13. API_Score_prefix: str = "/api/card_score"
  14. API_Config_prefix: str = "/api/config"
  15. BASE_PATH = Path(__file__).parent.parent.parent.absolute()
  16. TEMP_WORK_DIR = BASE_PATH / "_temp_work"
  17. SCORE_CONFIG_PATH = BASE_PATH / "app/core/scoring_config.json"
  18. # 图片像素与真实图片缩放比例
  19. PIXEL_RESOLUTION = 24.54
  20. CORNER_SIZE_MM = 3.0
  21. # 使用一个字典来管理所有卡片检测模型
  22. # key (如 'outer_box') 将成为 API 路径中的 {inference_type}
  23. '''
  24. face: "1": "wear", "2": "scratch", "3": "stain",
  25. "4": "scuff", "5": "impact", "6": "damaged",
  26. "7": "wear_and_impact", "8": "pit"
  27. corner: "1": "wear", "2": "wear_and_impact", "3": "damaged",
  28. "4": "impact", "5": "wear_and_stain"
  29. 简化版本: 边和角: wear, impact, damaged
  30. 面: wear, scratch, pit, impact, stain
  31. '''
  32. CARD_MODELS_CONFIG: Dict[str, CardModelConfig] = {
  33. "outer_box": {
  34. "pth_path": "Model/outer_box.pth",
  35. "class_dict": {1: 'outer_box'},
  36. "img_size": {'width': 1280, 'height': 1280},
  37. "confidence": 0.5,
  38. "input_channels": 3,
  39. },
  40. "pokemon_front_inner_box": {
  41. "pth_path": "Model/pokemon_front_inner_box.pth",
  42. "class_dict": {1: 'inner_box'},
  43. "img_size": {'width': 1280, 'height': 1280},
  44. "confidence": 0.5,
  45. "input_channels": 3,
  46. },
  47. "pokemon_back_inner_box": {
  48. "pth_path": "Model/pokemon_back_inner_box.pth",
  49. "class_dict": {1: 'inner_box'},
  50. "img_size": {'width': 1280, 'height': 1280},
  51. "confidence": 0.5,
  52. "input_channels": 3,
  53. },
  54. "pokemon_back_corner_defect": {
  55. "pth_path": "Model/pokemon_back_corner_defect.pth",
  56. "class_dict": {"1": "wear", "2": "wear_and_impact", "3": "damaged",
  57. "4": "impact", "5": "wear_and_stain"},
  58. "img_size": {'width': 512, 'height': 512},
  59. "confidence": 0.5,
  60. "input_channels": 3,
  61. },
  62. "pokemon_back_face_defect": {
  63. "pth_path": "Model/pokemon_back_face_defect.pth",
  64. "class_dict": {"1": "wear", "2": "scratch", "3": "stain",
  65. "4": "scuff", "5": "impact", "6": "damaged",
  66. "7": "wear_and_impact"},
  67. "img_size": {'width': 512, 'height': 512},
  68. "confidence": 0.5,
  69. "input_channels": 3,
  70. },
  71. "pokemon_front_face_reflect_defect": {
  72. "pth_path": "Model/pokemon_front_face_reflect_defect.pth",
  73. "class_dict": {"1": "stain","2": "scratch","3": "impact","4": "wear","5": "wear"},
  74. "img_size": {'width': 512, 'height': 512},
  75. "confidence": 0.5,
  76. "input_channels": 3,
  77. },
  78. "pokemon_front_corner_reflect_defect": {
  79. "pth_path": "Model/pokemon_front_corner_reflect_defect.pth",
  80. "class_dict": {"1": "impact","2": "wear_and_impact","3": "wear"},
  81. "img_size": {'width': 512, 'height': 512},
  82. "confidence": 0.5,
  83. "input_channels": 3,
  84. },
  85. "pokemon_front_corner_no_reflect_defect": {
  86. "pth_path": "Model/pokemon_front_corner_no_reflect_defect.pth",
  87. "class_dict": {"1": "wear","2": "wear_and_impact","3": "impact","4": "damaged","5": "stain"},
  88. "img_size": {'width': 512, 'height': 512},
  89. "confidence": 0.5,
  90. "input_channels": 3,
  91. },
  92. "pokemon_front_face_no_reflect_defect": {
  93. "pth_path": "Model/pokemon_front_face_no_reflect_defect.pth",
  94. "class_dict": {"1": "scratch", "2": "wear", "3": "stain", "4": "damaged", "5": "impact"},
  95. "img_size": {'width': 512, 'height': 512},
  96. "confidence": 0.5,
  97. "input_channels": 3,
  98. },
  99. }
  100. # 包含, 环形光居中计算, 环形光正反边角缺陷, 同轴光正反表面缺陷
  101. # 里面存储需要用到的模型类型
  102. DEFECT_TYPE: Dict[str, dict] = {
  103. "pokemon_front_card_center": {
  104. "inner_box": "pokemon_front_inner_box",
  105. "outer_box": "outer_box",
  106. },
  107. "pokemon_back_card_center": {
  108. "inner_box": "pokemon_back_inner_box",
  109. "outer_box": "outer_box",
  110. },
  111. "pokemon_back_face_defect": {
  112. 'model_type': "pokemon_back_face_defect"
  113. },
  114. "pokemon_back_corner_defect": {
  115. 'model_type': "pokemon_back_corner_defect"
  116. },
  117. "pokemon_front_corner_reflect_defect": {
  118. "model_type": "pokemon_front_corner_reflect_defect"
  119. },
  120. "pokemon_front_face_reflect_defect": {
  121. "model_type": "pokemon_front_face_reflect_defect"
  122. },
  123. "pokemon_front_corner_no_reflect_defect": {
  124. "model_type": "pokemon_front_corner_no_reflect_defect",
  125. },
  126. "pokemon_front_face_no_reflect_defect": {
  127. "model_type": "pokemon_front_face_no_reflect_defect",
  128. }
  129. }
  130. SCORE_TYPE: List[str] = ["front_corner_edge", "front_face",
  131. "back_corner_edge", "back_face"]
  132. settings = Settings()
  133. print(f"项目根目录: {settings.BASE_PATH}")
  134. # DefectType = Enum("InferenceType", {name: name for name in settings.DEFECT_TYPE})
  135. # print()