| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- import cv2
- import numpy as np
- import json
- import matplotlib.pyplot as plt
- import math
- from typing import Union, List
- from app.core.logger import get_logger
- logger = get_logger(__name__)
- def get_points_from_file(json_file):
- """辅助函数,从JSON文件加载点"""
- with open(json_file, 'r') as f:
- data = json.load(f)
- return data['shapes'][0]['points']
- def get_rect_from_file(json_file):
- """辅助函数,从JSON文件加载点"""
- with open(json_file, 'r') as f:
- data = json.load(f)
- return data['shapes'][0]['rect_box']
- def draw_rotated_bounding_boxes(image_path, inner_box_file, outer_box_file, output_path=None):
- """
- 在图片上绘制内框和外框的旋转矩形。
- Args:
- image_path (str): 原始图片的文件路径。
- inner_box_file (str): 包含内框坐标的JSON文件路径。
- outer_box_file (str): 包含外框坐标的JSON文件路径。
- output_path (str, optional): 如果提供,结果图片将被保存到此路径。
- 默认为None,不保存。
- """
- # 1. 读取图片
- image = cv2.imread(image_path)
- if image is None:
- print(f"错误: 无法读取图片 -> {image_path}")
- return
- print(f"成功加载图片: {image_path}")
- # 2. 读取坐标点
- inner_points = get_points_from_file(inner_box_file)
- outer_points = get_points_from_file(outer_box_file)
- if inner_points is None or outer_points is None:
- print("因无法加载坐标点,程序终止。")
- return
- # 定义颜色 (BGR格式)
- OUTER_BOX_COLOR = (0, 255, 0) # 绿色
- INNER_BOX_COLOR = (0, 0, 255) # 红色
- THICKNESS = 10 # 可以根据你的图片分辨率调整线宽
- # 3. 处理并绘制外框
- # 将点列表转换为OpenCV需要的NumPy数组
- outer_contour = np.array(outer_points, dtype=np.int32)
- # 计算最小面积旋转矩形
- outer_rect = cv2.minAreaRect(outer_contour)
- # 获取矩形的4个角点
- outer_box_corners = cv2.boxPoints(outer_rect)
- # 转换为整数,以便绘制
- outer_box_corners_int = np.intp(outer_box_corners)
- # 在图片上绘制轮廓
- cv2.drawContours(image, [outer_box_corners_int], 0, OUTER_BOX_COLOR, THICKNESS)
- print("已绘制外框 (绿色)。")
- # 4. 处理并绘制内框
- inner_contour = np.array(inner_points, dtype=np.int32)
- inner_rect = cv2.minAreaRect(inner_contour)
- inner_box_corners = cv2.boxPoints(inner_rect)
- inner_box_corners_int = np.intp(inner_box_corners)
- cv2.drawContours(image, [inner_box_corners_int], 0, INNER_BOX_COLOR, THICKNESS)
- print("已绘制内框 (红色)。")
- # 5. 保存结果 (如果指定了路径)
- if output_path:
- cv2.imwrite(output_path, image)
- print(f"结果已保存到: {output_path}")
- # 6. 显示结果
- # OpenCV使用BGR,Matplotlib使用RGB,需要转换颜色通道
- image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- # 使用Matplotlib显示,因为它在各种环境中(如Jupyter)表现更好
- plt.figure(figsize=(10, 15)) # 调整显示窗口大小
- plt.imshow(image_rgb)
- plt.title('旋转框可视化 (外框: 绿色, 内框: 红色)')
- plt.axis('off') # 不显示坐标轴
- plt.show()
- def analyze_centering_rect(inner_points: Union[str, List], outer_points: Union[str, List]):
- """
- 使用横平竖直的矩形 (Axis-Aligned Bounding Box) 进行居中分析。
- 适用于前端已经修正过的矩形数据。
- """
- if isinstance(inner_points, str):
- inner_points = get_rect_from_file(inner_points)
- if isinstance(outer_points, str):
- outer_points = get_rect_from_file(outer_points)
- # 1. 转换为 float32 数组,保留计算精度
- inner_contour = np.array(inner_points, dtype=np.float32)
- outer_contour = np.array(outer_points, dtype=np.float32)
- # --- 修改点 1: 在计算 min/max 后立即转为 Python float ---
- def get_float_bounding_rect(points):
- # np.min 返回的是 numpy.float32,必须转为 python float
- x_min = float(np.min(points[:, 0]))
- y_min = float(np.min(points[:, 1]))
- x_max = float(np.max(points[:, 0]))
- y_max = float(np.max(points[:, 1]))
- w = x_max - x_min
- h = y_max - y_min
- return x_min, y_min, w, h
- ix, iy, iw, ih = get_float_bounding_rect(inner_contour)
- ox, oy, ow, oh = get_float_bounding_rect(outer_contour)
- # 构造标准的4点格式返回
- # 因为 ix, iy 等已经是 python float 了,所以列表里装的也是 safe 的 float
- def get_box_corners(x, y, w, h):
- return [
- [x, y],
- [x + w, y],
- [x + w, y + h],
- [x, y + h]
- ]
- inner_box_corners_float = get_box_corners(ix, iy, iw, ih)
- outer_box_corners_float = get_box_corners(ox, oy, ow, oh)
- print("\n--- 基于修正矩形(横平竖直, Float精度)的分析 ---")
- print(f"内框: x={ix:.2f}, y={iy:.2f}, w={iw:.2f}, h={ih:.2f}")
- # --- 3. 计算边距 (Margins) ---
- margin_left = ix - ox
- margin_right = (ox + ow) - (ix + iw)
- margin_top = iy - oy
- margin_bottom = (oy + oh) - (iy + ih)
- # --- 4. 计算百分比 ---
- total_horizontal_margin = margin_left + margin_right
- total_vertical_margin = margin_top + margin_bottom
- left_percent = 50.0
- right_percent = 50.0
- top_percent = 50.0
- bottom_percent = 50.0
- # --- 修改点 2: 计算结果也要转为 float (虽然上面的 ix 是 float,但运算可能再次产生 numpy 类型) ---
- if total_horizontal_margin > 0.0001:
- left_percent = float((margin_left / total_horizontal_margin) * 100)
- right_percent = float((margin_right / total_horizontal_margin) * 100)
- print(f"水平边距分布: 左 {left_percent:.1f}% | 右 {right_percent:.1f}%")
- if total_vertical_margin > 0.0001:
- top_percent = float((margin_top / total_vertical_margin) * 100)
- bottom_percent = float((margin_bottom / total_vertical_margin) * 100)
- print(f"垂直边距分布: 上 {top_percent:.1f}% | 下 {bottom_percent:.1f}%")
- angle_diff = 0.0
- return ((left_percent, right_percent),
- (top_percent, bottom_percent),
- angle_diff), inner_box_corners_float, outer_box_corners_float
- def analyze_centering_rect(inner_points: Union[str, List], outer_points: Union[str, List]):
- """
- 使用横平竖直的矩形 (Axis-Aligned Bounding Box) 进行居中分析。
- 适用于前端已经修正过的矩形数据。
- """
- if isinstance(inner_points, str):
- inner_points = get_rect_from_file(inner_points)
- if isinstance(outer_points, str):
- outer_points = get_rect_from_file(outer_points)
- # --- 1. 转换为 float32 数组,保留精度 ---
- inner_contour = np.array(inner_points, dtype=np.float32)
- outer_contour = np.array(outer_points, dtype=np.float32)
- # --- 2. 手动计算 float 级别的 boundingRect ---
- def get_float_bounding_rect(points):
- # points shape: (N, 2)
- x_min = np.min(points[:, 0])
- y_min = np.min(points[:, 1])
- x_max = np.max(points[:, 0])
- y_max = np.max(points[:, 1])
- w = x_max - x_min
- h = y_max - y_min
- return x_min, y_min, w, h
- ix, iy, iw, ih = get_float_bounding_rect(inner_contour)
- ox, oy, ow, oh = get_float_bounding_rect(outer_contour)
- # 构造标准的4点格式返回 (保持和 analyze_centering_rotated 输出一致)
- def get_box_corners(x, y, w, h):
- return [[x, y], [x + w, y], [x + w, y + h], [x, y + h]]
- inner_box_corners_float = get_box_corners(ix, iy, iw, ih)
- outer_box_corners_float = get_box_corners(ox, oy, ow, oh)
- print("\n--- 基于修正矩形(横平竖直, Float精度)的分析 ---")
- print(f"内框: x={ix:.2f}, y={iy:.2f}, w={iw:.2f}, h={ih:.2f}")
- print(f"外框: x={ox:.2f}, y={oy:.2f}, w={ow:.2f}, h={oh:.2f}")
- # --- 3. 计算边距 (Margins) ---
- # 图像坐标系:x向右增加,y向下增加
- # 左边距:内框左边 - 外框左边
- margin_left = ix - ox
- # 右边距:外框右边(x+w) - 内框右边(x+w)
- margin_right = (ox + ow) - (ix + iw)
- # 上边距:内框上边 - 外框上边
- margin_top = iy - oy
- # 下边距:外框下边(y+h) - 内框下边(y+h)
- margin_bottom = (oy + oh) - (iy + ih)
- # --- 4. 计算百分比 ---
- total_horizontal_margin = margin_left + margin_right
- total_vertical_margin = margin_top + margin_bottom
- left_percent = 50.0
- right_percent = 50.0
- top_percent = 50.0
- bottom_percent = 50.0
- if total_horizontal_margin > 0.0001: # 避免除零
- left_percent = (margin_left / total_horizontal_margin) * 100
- right_percent = (margin_right / total_horizontal_margin) * 100
- print(f"水平边距分布: 左 {left_percent:.1f}% | 右 {right_percent:.1f}%")
- if total_vertical_margin > 0.0001:
- top_percent = (margin_top / total_vertical_margin) * 100
- bottom_percent = (margin_bottom / total_vertical_margin) * 100
- print(f"垂直边距分布: 上 {top_percent:.1f}% | 下 {bottom_percent:.1f}%")
- # --- 5. 角度差异 ---
- # 因为已经是横平竖直的矩形,角度差默认为 0
- angle_diff = 0.0
- # 返回格式保持与原函数 analyze_centering_rotated 一致:
- # ((左%, 右%), (上%, 下%), 角度差), 内框点集, 外框点集
- return ((left_percent, right_percent),
- (top_percent, bottom_percent),
- angle_diff), inner_box_corners_float, outer_box_corners_float
- def formate_center_data(center_result,
- inner_data: dict, outer_data: dict,
- inner_rect_points: List, outer_rect_points: List):
- data = {
- "box_result": {
- "center_inference": {
- "angel_diff": center_result[2],
- "center_left": center_result[0][0],
- "center_right": center_result[0][1],
- "center_top": center_result[1][0],
- "center_bottom": center_result[1][1]
- }
- }
- }
- data['box_result']['inner_box'] = inner_data
- data['box_result']['outer_box'] = outer_data
- data['box_result']['inner_box']['shapes'][0]['rect_box'] = inner_rect_points
- data['box_result']['outer_box']['shapes'][0]['rect_box'] = outer_rect_points
- return data
- # if __name__ == "__main__":
- # img_path = r"C:\Code\ML\Project\CheckCardBoxAndDefectServer\temp\250805_pokemon_0001.jpg"
- # inner_file_path = r"C:\Code\ML\Project\CheckCardBoxAndDefectServer\temp\inner\250805_pokemon_0001.json"
- # outer_file_path = r"C:\Code\ML\Project\CheckCardBoxAndDefectServer\temp\outer\250805_pokemon_0001.json"
- #
- # inner_pts = get_points_from_file(inner_file_path)
- # print(inner_pts)
- # print(type(inner_pts))
- #
- # result = analyze_centering_rotated(inner_file_path, outer_file_path)
- # print(result)
- # draw_rotated_bounding_boxes(img_path, inner_file_path, outer_file_path)
|