defect_service.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. import cv2
  2. import numpy as np
  3. from ..core.model_loader import get_predictor
  4. from app.utils.defect_inference.CardDefectAggregator import CardDefectAggregator
  5. from app.utils.defect_inference.arean_anylize_draw import DefectProcessor, DrawingParams
  6. from app.utils.defect_inference.AnalyzeCenter import analyze_centering_rotated
  7. from app.utils.defect_inference.ClassifyEdgeCorner import ClassifyEdgeCorner
  8. from app.utils.json_data_formate import formate_center_data, formate_face_data
  9. from app.core.config import settings
  10. from app.core.logger import get_logger
  11. import json
  12. logger = get_logger(__name__)
  13. class DefectInferenceService:
  14. def defect_inference(self, inference_type: str , image_bytes: bytes,
  15. is_draw_image=False) -> dict:
  16. """
  17. 执行卡片识别推理。
  18. Args:
  19. inference_type: 模型类型 (e.g., 'outer_box').
  20. image_bytes: 从API请求中获得的原始图像字节。
  21. Returns:
  22. 一个包含推理结果的字典。
  23. """
  24. # 2. 将字节流解码为OpenCV图像
  25. # 将字节数据转换为numpy数组
  26. np_arr = np.frombuffer(image_bytes, np.uint8)
  27. # 从numpy数组中解码图像
  28. img_bgr = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
  29. if img_bgr is None:
  30. logger.error("无法解码图像,请确保上传的是有效的图片格式 (JPG, PNG, etc.)")
  31. return {}
  32. # 面
  33. if (inference_type == "pokemon_front_face_no_reflect_defect"
  34. or inference_type == "pokemon_front_face_reflect_defect"
  35. or inference_type == "pokemon_back_face_defect"):
  36. # 1. 获取对应的预测器实例
  37. predictor = get_predictor(inference_type)
  38. # 3. 调用我们新加的 predict_from_image 方法进行推理
  39. # result = predictor.predict_from_image(img_bgr)
  40. # 3. 实例化我们聚合器,传入预测器
  41. aggregator = CardDefectAggregator(
  42. predictor=predictor,
  43. tile_size=512,
  44. overlap_ratio=0.1, # 10% 重叠
  45. )
  46. json_data = aggregator.process_image(
  47. image=img_bgr,
  48. mode='face'
  49. )
  50. # merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  51. # with open(merge_json_path, 'w', encoding='utf-8') as f:
  52. # json.dump(json_data, f, ensure_ascii=False, indent=4)
  53. # logger.info(f"合并结束")
  54. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  55. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.json'
  56. if is_draw_image:
  57. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  58. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  59. drawing_params_with_rect)
  60. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.jpg'
  61. cv2.imwrite(temp_img_path, drawn_image)
  62. else:
  63. area_json = processor.analyze_from_json(json_data)
  64. face_json_result = formate_face_data(area_json)
  65. with open(area_json_path, 'w', encoding='utf-8') as f:
  66. json.dump(face_json_result, f, ensure_ascii=False, indent=2)
  67. logger.info("面的面积计算结束")
  68. return face_json_result
  69. # 边角
  70. elif (inference_type == "pokemon_front_corner_no_reflect_defect"
  71. or inference_type == "pokemon_front_corner_reflect_defect"
  72. or inference_type == "pokemon_back_corner_defect"):
  73. predictor = get_predictor(inference_type)
  74. aggregator = CardDefectAggregator(
  75. predictor=predictor,
  76. tile_size=512,
  77. overlap_ratio=0.1, # 10% 重叠
  78. )
  79. json_data = aggregator.process_image(
  80. image=img_bgr,
  81. mode='edge'
  82. )
  83. # merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  84. # with open(merge_json_path, 'w', encoding='utf-8') as f:
  85. # json.dump(json_data, f, ensure_ascii=False, indent=4)
  86. # logger.info(f"合并结束")
  87. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  88. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.json'
  89. if is_draw_image:
  90. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  91. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  92. drawing_params_with_rect)
  93. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.jpg'
  94. cv2.imwrite(temp_img_path, drawn_image)
  95. else:
  96. area_json: dict = processor.analyze_from_json(json_data)
  97. logger.info("边角缺陷面积计算结束")
  98. # 推理外框
  99. predictor_outer = get_predictor("outer_box")
  100. outer_result = predictor_outer.predict_from_image(img_bgr)
  101. classifier = ClassifyEdgeCorner(settings.PIXEL_RESOLUTION, settings.CORNER_SIZE_MM)
  102. edge_corner_data = classifier.classify_defects_location(area_json, outer_result)
  103. with open(area_json_path, 'w', encoding='utf-8') as f:
  104. json.dump(edge_corner_data, f, ensure_ascii=False, indent=2)
  105. logger.info("边角面积计算结束")
  106. return edge_corner_data
  107. elif inference_type == "pokemon_front_card_center" \
  108. or inference_type == "pokemon_back_card_center":
  109. predictor_inner = get_predictor(settings.DEFECT_TYPE[inference_type]['inner_box'])
  110. predictor_outer = get_predictor(settings.DEFECT_TYPE[inference_type]['outer_box'])
  111. inner_result = predictor_inner.predict_from_image(img_bgr)
  112. outer_result = predictor_outer.predict_from_image(img_bgr)
  113. # temp_inner_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-inner_result.json'
  114. # temp_outer_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-outer_result.json'
  115. # with open(temp_inner_json_path, 'w', encoding='utf-8') as f:
  116. # json.dump(inner_result, f, ensure_ascii=False, indent=4)
  117. # with open(temp_outer_json_path, 'w', encoding='utf-8') as f:
  118. # json.dump(outer_result, f, ensure_ascii=False, indent=4)
  119. inner_points = inner_result['shapes'][0]['points']
  120. outer_points = outer_result['shapes'][0]['points']
  121. center_result = analyze_centering_rotated(inner_points, outer_points)
  122. logger.info("格式化居中数据")
  123. center_result = formate_center_data(center_result, inner_result, outer_result)
  124. temp_center_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-center_result.json'
  125. with open(temp_center_json_path, 'w', encoding='utf-8') as f:
  126. json.dump(center_result, f, ensure_ascii=False, indent=2)
  127. return center_result
  128. else:
  129. return {}
  130. # 创建一个单例服务
  131. # defect_service = DefectInferenceService()