defect_service.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. import cv2
  2. import numpy as np
  3. from ..core.model_loader import get_predictor
  4. from app.utils.defect_inference.CardDefectAggregator import CardDefectAggregator
  5. from app.utils.defect_inference.arean_anylize_draw import DefectProcessor, DrawingParams
  6. from app.utils.defect_inference.AnalyzeCenter import analyze_centering_rotated, formate_center_data
  7. from app.utils.defect_inference.DrawCenterInfo import draw_boxes_and_center_info
  8. from app.utils.defect_inference.ClassifyEdgeCorner import ClassifyEdgeCorner
  9. from app.utils.json_data_formate import formate_face_data, formate_add_edit_type
  10. from app.utils.simplify_points import SimplifyPoints
  11. from app.core.config import settings
  12. from app.core.logger import get_logger
  13. import json
  14. logger = get_logger(__name__)
  15. class DefectInferenceService:
  16. def defect_inference(self, inference_type: str, img_bgr: np.ndarray,
  17. is_draw_image=True) -> dict:
  18. """
  19. 执行卡片识别推理。
  20. Args:
  21. inference_type: 模型类型 (e.g., 'outer_box').
  22. img_bgr: 图像。
  23. Returns:
  24. 一个包含推理结果的字典。
  25. """
  26. simplifyPoints = SimplifyPoints()
  27. # 面
  28. if (inference_type == "pokemon_front_face_no_reflect_defect"
  29. or inference_type == "pokemon_front_face_reflect_defect"
  30. or inference_type == "pokemon_back_face_defect"):
  31. # 1. 获取对应的预测器实例
  32. predictor = get_predictor(inference_type)
  33. # 3. 调用我们新加的 predict_from_image 方法进行推理
  34. # result = predictor.predict_from_image(img_bgr)
  35. # 3. 实例化我们聚合器,传入预测器
  36. aggregator = CardDefectAggregator(
  37. predictor=predictor,
  38. tile_size=512,
  39. overlap_ratio=0.1, # 10% 重叠
  40. )
  41. json_data = aggregator.process_image(
  42. image=img_bgr,
  43. mode='face'
  44. )
  45. # 简化点数
  46. for shapes in json_data["shapes"]:
  47. points = shapes["points"]
  48. num1 = len(points)
  49. simplify_points = simplifyPoints.simplify_points(points)
  50. shapes["points"] = simplify_points
  51. new_num1 = len(simplify_points)
  52. logger.info(f"num: {num1}, new_num1: {new_num1}")
  53. merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  54. with open(merge_json_path, 'w', encoding='utf-8') as f:
  55. json.dump(json_data, f, ensure_ascii=False, indent=4)
  56. logger.info(f"合并结束")
  57. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  58. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.json'
  59. if is_draw_image:
  60. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  61. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  62. drawing_params_with_rect)
  63. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-face_result.jpg'
  64. cv2.imwrite(temp_img_path, drawn_image)
  65. else:
  66. area_json = processor.analyze_from_json(json_data)
  67. face_json_result = formate_face_data(area_json)
  68. face_json_result = formate_add_edit_type(face_json_result)
  69. with open(area_json_path, 'w', encoding='utf-8') as f:
  70. json.dump(face_json_result, f, ensure_ascii=False, indent=2)
  71. logger.info("面的面积计算结束")
  72. return face_json_result
  73. # 边角
  74. elif (inference_type == "pokemon_front_corner_no_reflect_defect"
  75. or inference_type == "pokemon_front_corner_reflect_defect"
  76. or inference_type == "pokemon_back_corner_defect"):
  77. predictor = get_predictor(inference_type)
  78. aggregator = CardDefectAggregator(
  79. predictor=predictor,
  80. tile_size=512,
  81. overlap_ratio=0.1, # 10% 重叠
  82. )
  83. json_data = aggregator.process_image(
  84. image=img_bgr,
  85. mode='edge'
  86. )
  87. for shapes in json_data["shapes"]:
  88. points = shapes["points"]
  89. num1 = len(points)
  90. simplify_points = simplifyPoints.simplify_points(points)
  91. shapes["points"] = simplify_points
  92. new_num1 = len(simplify_points)
  93. logger.info(f"num: {num1}, new_num1: {new_num1}")
  94. # merge_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-merge.json'
  95. # with open(merge_json_path, 'w', encoding='utf-8') as f:
  96. # json.dump(json_data, f, ensure_ascii=False, indent=4)
  97. # logger.info(f"合并结束")
  98. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  99. area_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.json'
  100. if is_draw_image:
  101. drawing_params_with_rect = DrawingParams(draw_min_rect=True)
  102. drawn_image, area_json = processor.analyze_and_draw(img_bgr, json_data,
  103. drawing_params_with_rect)
  104. temp_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-corner_result.jpg'
  105. cv2.imwrite(temp_img_path, drawn_image)
  106. else:
  107. area_json: dict = processor.analyze_from_json(json_data)
  108. logger.info("边角缺陷面积计算结束")
  109. # 推理外框
  110. predictor_outer = get_predictor("outer_box")
  111. outer_result = predictor_outer.predict_from_image(img_bgr)
  112. classifier = ClassifyEdgeCorner(settings.PIXEL_RESOLUTION, settings.CORNER_SIZE_MM)
  113. edge_corner_data = classifier.classify_defects_location(area_json, outer_result)
  114. edge_corner_data = formate_add_edit_type(edge_corner_data)
  115. with open(area_json_path, 'w', encoding='utf-8') as f:
  116. json.dump(edge_corner_data, f, ensure_ascii=False, indent=2)
  117. logger.info("边角面积计算结束")
  118. return edge_corner_data
  119. elif inference_type == "pokemon_front_card_center" \
  120. or inference_type == "pokemon_back_card_center":
  121. predictor_inner = get_predictor(settings.DEFECT_TYPE[inference_type]['inner_box'])
  122. predictor_outer = get_predictor(settings.DEFECT_TYPE[inference_type]['outer_box'])
  123. inner_result = predictor_inner.predict_from_image(img_bgr)
  124. outer_result = predictor_outer.predict_from_image(img_bgr)
  125. # temp_inner_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-inner_result.json'
  126. # temp_outer_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-outer_result.json'
  127. # with open(temp_inner_json_path, 'w', encoding='utf-8') as f:
  128. # json.dump(inner_result, f, ensure_ascii=False, indent=4)
  129. # with open(temp_outer_json_path, 'w', encoding='utf-8') as f:
  130. # json.dump(outer_result, f, ensure_ascii=False, indent=4)
  131. inner_points = inner_result['shapes'][0]['points']
  132. outer_points = outer_result['shapes'][0]['points']
  133. center_result, inner_rect_box, outer_rect_box = analyze_centering_rotated(inner_points, outer_points)
  134. # logger.info(f"inner_rect_box: {type(inner_rect_box)}, {inner_rect_box}")
  135. # logger.info(f"outer_rect_box: , {outer_rect_box}")
  136. logger.info("格式化居中数据")
  137. center_result = formate_center_data(center_result,
  138. inner_result, outer_result,
  139. inner_rect_box, outer_rect_box)
  140. draw_img = draw_boxes_and_center_info(img_bgr, center_result)
  141. temp_center_img_path = settings.TEMP_WORK_DIR / f'{inference_type}-center_result.jpg'
  142. cv2.imwrite(temp_center_img_path, draw_img)
  143. temp_center_json_path = settings.TEMP_WORK_DIR / f'{inference_type}-center_result.json'
  144. with open(temp_center_json_path, 'w', encoding='utf-8') as f:
  145. json.dump(center_result, f, ensure_ascii=False, indent=2)
  146. return center_result
  147. else:
  148. return {}
  149. # inference_type: center, face, corner_edge
  150. def re_inference_from_json(self, inference_type: str, center_json: dict, defect_json: dict) -> dict:
  151. inference_type_list = ["center", "face", "corner_edge"]
  152. if inference_type not in inference_type_list:
  153. logger.error(f"inference_type 只能为{inference_type_list}, 输入为{inference_type}")
  154. raise ValueError(f"inference_type 只能为{inference_type_list}, 输入为{inference_type}")
  155. processor = DefectProcessor(pixel_resolution=settings.PIXEL_RESOLUTION)
  156. # 对于面的图, 不计算居中相关, 这里得到的center_json 应该为 {}
  157. if inference_type == "face":
  158. area_json = processor.re_analyze_from_json(defect_json)
  159. face_json_result = formate_face_data(area_json)
  160. logger.info("面缺陷面积计算结束")
  161. return face_json_result
  162. inner_result = center_json['box_result']['inner_box']
  163. outer_result = center_json['box_result']['outer_box']
  164. if inference_type == "center":
  165. inner_points = inner_result['shapes'][0]['points']
  166. outer_points = outer_result['shapes'][0]['points']
  167. center_result, inner_rect_box, outer_rect_box = analyze_centering_rotated(inner_points, outer_points)
  168. center_result = formate_center_data(center_result,
  169. inner_result, outer_result,
  170. inner_rect_box, outer_rect_box)
  171. return center_result
  172. elif inference_type == "corner_edge":
  173. area_json: dict = processor.re_analyze_from_json(defect_json)
  174. logger.info("边角缺陷面积计算结束")
  175. # 根据外框区分边和角
  176. classifier = ClassifyEdgeCorner(settings.PIXEL_RESOLUTION, settings.CORNER_SIZE_MM)
  177. edge_corner_data = classifier.classify_defects_location(area_json, outer_result)
  178. logger.info("边角面积计算结束")
  179. return edge_corner_data
  180. else:
  181. return {}
  182. # 创建一个单例服务
  183. # defect_service = DefectInferenceService()