| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- import cv2
- import numpy as np
- import copy
- from ..core.model_loader import get_predictor
- from app.utils.defect_inference.img_rectify_and_center import (
- FryCardProcessParams, FryCardProcessor, CenterMode, FillMode)
- from app.core.config import settings
- from app.core.logger import get_logger
- import json
- logger = get_logger(__name__)
- class CardRectifyAndCenter:
- def __init__(self):
- self.inference_type = "outer_box"
- self.outer_box_model = get_predictor(self.inference_type)
- def _keep_max_prob_shape(self, json_data: dict) -> dict:
- """
- 辅助函数:过滤掉低置信度的框,只保留 probability 最大的那一个。
- """
- if not json_data or 'shapes' not in json_data or not json_data['shapes']:
- return json_data
- shapes = json_data['shapes']
- # 如果只有一个,直接返回
- if len(shapes) == 1:
- return json_data
- logger.info(f"检测到 {len(shapes)} 个外框,开始筛选最大置信度目标...")
- # 使用 max 函数找出 probability 最大的 shape
- # x.get('probability', 0) 确保如果字段不存在默认为0
- best_shape = max(shapes, key=lambda x: x.get('probability', 0))
- logger.info(f"筛选结果: 保留置信度为 {best_shape.get('probability')} 的目标,"
- f"丢弃了其他 {len(shapes) - 1} 个目标。")
- # 重新赋值给 shapes,保持列表结构
- json_data['shapes'] = [best_shape]
- # 同时更新 num 数量,保持数据一致性
- if 'num' in json_data:
- json_data['num'] = 1
- return json_data
- def rectify_and_center(self, img_bgr: np.ndarray) -> tuple[np.ndarray, dict]:
- """
- 修改返回值: (final_image, rectified_json)
- """
- # 1. 设置处理参数
- params = FryCardProcessParams(
- debug_level="detail",
- label_name="outer_box",
- center_mode=CenterMode.BOUNDING_RECT,
- fill_mode=FillMode.BLACK
- )
- # 2. 初始化处理器
- processor = FryCardProcessor()
- # 3. 原始外框推理
- seg_json = self.outer_box_model.predict_from_image(img_bgr)
- seg_json = self._keep_max_prob_shape(seg_json)
- # 4. 执行处理,获取图像和变换矩阵
- final_image, matrix = processor.process_image_with_json(img_bgr, seg_json, params)
- # 5. 生成变换后的 JSON 数据
- rectified_json = copy.deepcopy(seg_json)
- if matrix is not None and 'shapes' in rectified_json:
- logger.info("正在将原始外框坐标映射到转正后的坐标系...")
- for shape in rectified_json['shapes']:
- original_points = shape.get('points', [])
- if original_points:
- # 使用矩阵变换点
- new_points = processor.transform_points_with_matrix(original_points, matrix)
- shape['points'] = new_points
- # 清除可能存在的 rect_box,确保后续逻辑重新计算最小外接矩形
- if 'rect_box' in shape:
- del shape['rect_box']
- temp_img_path = settings.TEMP_WORK_DIR / "rectify_center_img.jpg"
- if final_image is not None:
- cv2.imwrite(temp_img_path, final_image)
- return final_image, rectified_json
|