from pathlib import Path # 定义一个模型的配置结构 class CardModelConfig: pth_path: str class_dict: dict img_size: dict confidence: float input_channels: int class Settings: API_prefix: str = "/api/card_inference" BASE_PATH = Path(__file__).parent.parent.absolute() # 使用一个字典来管理所有卡片检测模型 # key (如 'outer_box') 将成为 API 路径中的 {inference_type} CARD_MODELS_CONFIG: dict[str, CardModelConfig] = { "outer_box": { "pth_path": "Model/outer_box.pth", "class_dict": {1: 'outer_box'}, "img_size": {'width': 1280, 'height': 1280}, "confidence": 0.5, "input_channels": 3, }, "inner_box": { "pth_path": "Model/inner_box.pth", "class_dict": {1: 'inner_box'}, "img_size": {'width': 1280, 'height': 1280}, "confidence": 0.5, "input_channels": 3, }, "back_defect": { "pth_path": "Model/back_defect.pth", "class_dict": { 1: 'wear', 2: 'wear_and_impact', 3: 'impact', 4: 'damaged', 5: 'wear_and_stain', }, "img_size": {'width': 512, 'height': 512}, "confidence": 0.5, "input_channels": 3, }, "no_reflect_front_defect": { "pth_path": "Model/no_reflect_front_defect.pth", "class_dict": {1: 'scratch', 2: 'pit', 3: 'stain'}, "img_size": {'width': 512, 'height': 512}, "confidence": 0.5, "input_channels": 3, } } settings = Settings() print(settings.BASE_PATH)