| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- from app.utils.scheme import CardDetailResponse, ImageType
- from app.core.logger import get_logger
- from typing import List
- logger = get_logger(__name__)
- def card_score_calculate(card_data: dict, images: List) -> CardDetailResponse:
- card_data["detection_score"] = None
- card_data["modified_score"] = None
- card_data["detection_score_detail"] = {}
- card_data["modified_score_detail"] = {}
- if len(images) == 4:
- try:
- # ---------- detection_score ----------
- detection_score = 10.0
- detection_center_score = 10.0
- detection_corner_score = 10.0
- detection_edge_score = 10.0
- detection_face_score = 10.0
- for img in images:
- try:
- # 总分的计算
- add_val = img.detection_json.get("result", {}).get("_used_compute_deduct_score", 0)
- detection_score += float(add_val or 0)
- # 累加不同类型的扣分项
- if img.image_type == ImageType.front_edge:
- center_reduct_val = img.detection_json.get("result", {}).get("center_result", {}).get(
- "deduct_score", 0)
- corner_reduct_val = img.detection_json.get("result", {}).get("defect_result", {}).get(
- "front_corner_deduct_score", 0)
- edge_reduct_val = img.detection_json.get("result", {}).get("defect_result", {}).get(
- "front_edge_deduct_score", 0)
- detection_center_score += float(center_reduct_val or 0)
- detection_corner_score += float(corner_reduct_val or 0)
- detection_edge_score += float(edge_reduct_val or 0)
- elif img.image_type == ImageType.back_edge:
- center_reduct_val = img.detection_json.get("result", {}).get("center_result", {}).get(
- "deduct_score", 0
- )
- corner_reduct_val = img.detection_json.get("result", {}).get("defect_result", {}).get(
- "back_corner_deduct_score", 0)
- edge_reduct_val = img.detection_json.get("result", {}).get("defect_result", {}).get(
- "back_edge_deduct_score", 0)
- detection_center_score += float(center_reduct_val or 0)
- detection_corner_score += float(corner_reduct_val or 0)
- detection_edge_score += float(edge_reduct_val or 0)
- elif img.image_type == ImageType.front_face:
- face_reduct_val = img.detection_json.get("result", {}).get("defect_result", {}).get(
- "front_face_deduct_score", 0)
- detection_face_score += float(face_reduct_val or 0)
- elif img.image_type == ImageType.back_face:
- face_reduct_val = img.detection_json.get("result", {}).get("defect_result", {}).get(
- "back_face_deduct_score", 0)
- detection_face_score += float(face_reduct_val or 0)
- except Exception as e:
- logger.warning(f"解析 detection_json 分数失败 (image_id={img.id}): {e}")
- card_data["detection_score"] = detection_score
- card_data["detection_score_detail"]["detection_center_score"] = detection_center_score
- card_data["detection_score_detail"]["detection_corner_score"] = detection_corner_score
- card_data["detection_score_detail"]["detection_edge_score"] = detection_edge_score
- card_data["detection_score_detail"]["detection_face_score"] = detection_face_score
- # ---------- modified_score ----------
- modified_score = 10.0
- modified_center_score = 10.0
- modified_corner_score = 10.0
- modified_edge_score = 10.0
- modified_face_score = 10.0
- all_modified_none = all(img.modified_json is None for img in images)
- if not all_modified_none:
- for img in images:
- src = img.modified_json if img.modified_json is not None else img.detection_json
- try:
- # 总分的计算
- add_val = src.get("result", {}).get("_used_compute_deduct_score", 0)
- modified_score += float(add_val or 0)
- # 累加不同修改后数据类型的扣分项
- if img.image_type == ImageType.front_edge:
- center_reduct_val = src.get("result", {}).get("center_result", {}).get(
- "deduct_score", 0)
- corner_reduct_val = src.get("result", {}).get("defect_result", {}).get(
- "front_corner_deduct_score", 0)
- edge_reduct_val = src.get("result", {}).get("defect_result", {}).get(
- "front_edge_deduct_score", 0)
- modified_center_score += float(center_reduct_val or 0)
- modified_corner_score += float(corner_reduct_val or 0)
- modified_edge_score += float(edge_reduct_val or 0)
- elif img.image_type == ImageType.back_edge:
- center_reduct_val = src.get("result", {}).get("center_result", {}).get(
- "deduct_score", 0
- )
- corner_reduct_val = src.get("result", {}).get("defect_result", {}).get(
- "back_corner_deduct_score", 0)
- edge_reduct_val = src.get("result", {}).get("defect_result", {}).get(
- "back_edge_deduct_score", 0)
- modified_center_score += float(center_reduct_val or 0)
- modified_corner_score += float(corner_reduct_val or 0)
- modified_edge_score += float(edge_reduct_val or 0)
- elif img.image_type == ImageType.front_face:
- face_reduct_val = src.get("result", {}).get("defect_result", {}).get(
- "front_face_deduct_score", 0)
- modified_face_score += float(face_reduct_val or 0)
- elif img.image_type == ImageType.back_face:
- face_reduct_val = src.get("result", {}).get("defect_result", {}).get(
- "back_face_deduct_score", 0)
- modified_face_score += float(face_reduct_val or 0)
- except Exception as e:
- logger.warning(f"解析 modified_json 分数失败 (image_id={img.id}): {e}")
- card_data["modified_score"] = modified_score
- card_data["modified_score_detail"]["modified_center_score"] = modified_center_score
- card_data["modified_score_detail"]["modified_corner_score"] = modified_corner_score
- card_data["modified_score_detail"]["modified_edge_score"] = modified_edge_score
- card_data["modified_score_detail"]["modified_face_score"] = modified_face_score
- else:
- card_data["modified_score"] = None
- card_data["modified_score_detail"]["modified_center_score"] = None
- card_data["modified_score_detail"]["modified_corner_score"] = None
- card_data["modified_score_detail"]["modified_edge_score"] = None
- card_data["modified_score_detail"]["modified_face_score"] = None
- except Exception as e:
- logger.error(f"计算分数过程异常: {e}")
- # 组合成最终响应
- card_response = CardDetailResponse.model_validate(card_data)
- card_response.images = images
- return card_response
|