| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- from fastapi import APIRouter, HTTPException, Depends, Query
- from mysql.connector.pooling import PooledMySQLConnection
- import os
- import json
- import math
- from pathlib import Path
- from typing import List, Dict, Any, Optional
- from PIL import Image
- from app.core.logger import get_logger
- from app.core.config import settings
- from app.core.database_loader import get_db_connection
- from app.crud import crud_card
- from app.utils.scheme import ImageType
- logger = get_logger(__name__)
- router = APIRouter()
- # 定义新的缺陷图片存储路径
- DEFECT_IMAGE_DIR = settings.DEFECT_IMAGE_DIR
- def _get_active_json(image_data: Any) -> Optional[Dict]:
- """获取有效的json数据,优先 modified_json"""
- if not image_data:
- return None
- # image_data 可能是 Pydantic 对象或 字典,做兼容处理
- if hasattr(image_data, "modified_json"):
- mj = image_data.modified_json
- dj = image_data.detection_json
- else:
- mj = image_data.get("modified_json")
- dj = image_data.get("detection_json")
- # 注意:根据 schema.py,这里读出来已经是 dict 了,不需要 json.loads
- # 如果数据库里存的是 null,读出来是 None
- if mj:
- return mj
- return dj
- def _crop_defect_image(original_image_path_str: str, min_rect: List, output_filename: str) -> str:
- """
- 切割缺陷图片为正方形
- min_rect 结构: [[center_x, center_y], [width, height], angle]
- """
- try:
- # 构建绝对路径
- # 假设 original_image_path_str 是 "/Data/..." 格式
- rel_path = original_image_path_str.lstrip('/\\')
- full_path = settings.BASE_PATH / rel_path
- if not full_path.exists():
- logger.warning(f"原图不存在: {full_path}")
- return ""
- with Image.open(full_path) as img:
- img_w, img_h = img.size
- # 解析 min_rect
- # min_rect[0] 是中心点 [x, y]
- # min_rect[1] 是宽高 [w, h]
- center_x, center_y = min_rect[0]
- rect_w, rect_h = min_rect[1]
- # 确定裁剪的正方形边长:取宽高的最大值,并适当外扩 (例如 1.5 倍) 以展示周围环境
- # 如果缺陷非常小,设置一个最小尺寸(例如 100px),避免切图太模糊
- side_length = max(rect_w, rect_h) * 1.5
- side_length = max(side_length, 100)
- half_side = side_length / 2
- # 计算裁剪框 (left, top, right, bottom)
- left = center_x - half_side
- top = center_y - half_side
- right = center_x + half_side
- bottom = center_y + half_side
- # 边界检查,防止超出图片范围
- # 如果只是想保持正方形,超出部分可以填黑,或者简单的移动框的位置
- # 这里简单处理:如果超出边界,就移动框,实在移不动就截断
- if left < 0:
- right -= left # 往右移
- left = 0
- if top < 0:
- bottom -= top # 往下移
- top = 0
- if right > img_w:
- left -= (right - img_w) # 往左移
- right = img_w
- if bottom > img_h:
- top -= (bottom - img_h) # 往上移
- bottom = img_h
- # 再次检查防止负数(比如图片本身比框还小)
- left = max(0, left)
- top = max(0, top)
- right = min(img_w, right)
- bottom = min(img_h, bottom)
- crop_box = (left, top, right, bottom)
- cropped_img = img.crop(crop_box)
- # 保存
- save_path = DEFECT_IMAGE_DIR / output_filename
- cropped_img.save(save_path, quality=95)
- # 返回 URL 路径 (相对于项目根目录的 web 路径)
- return f"/DefectImage/{output_filename}"
- except Exception as e:
- logger.error(f"切割图片失败: {e}")
- return ""
- @router.get("/generate", status_code=200, summary="生成评级报告数据")
- def generate_rating_report(
- card_id: int,
- db_conn: PooledMySQLConnection = Depends(get_db_connection)
- ):
- top_n_defects = 3
- """
- 根据 Card ID 生成评级报告 JSON
- """
- # 1. 获取卡片详情 (复用 Crud 逻辑,确保能拿到所有图片)
- card_data = crud_card.get_card_with_details(db_conn, card_id)
- if not card_data:
- raise HTTPException(status_code=404, detail="未找到该卡片信息")
- # 初始化返回结构
- response_data = {
- "backImageUrl": "",
- "frontImageUrl": "",
- "cardNo": "",
- "centerBack": "",
- "centerFront": "",
- "measureLength": 0.0,
- "measureWidth": 0.0,
- "cornerBackNum": 0,
- "sideBackNum": 0,
- "surfaceBackNum": 0,
- "cornerFrontNum": 0,
- "sideFrontNum": 0,
- "surfaceFrontNum": 0,
- "popNum": 0, # 暂时无数据来源,置0
- "scoreThreshold": float(card_data.get("detection_score") or 0),
- "evaluateNo": str(card_data.get("id")),
- "recognizedInfoDTO": {
- "cardSet": "",
- "player": "",
- "series": "",
- "year": ""
- },
- "defectDetailList": []
- }
- # 临时列表用于收集所有缺陷,最后排序取 Top N
- all_defects_collected = []
- # 遍历图片寻找 Front Ring 和 Back Ring
- images = card_data.get("images", [])
- # 辅助字典:defect_type 到 统计字段 的映射
- defect_map_keys = {
- "front_ring": {
- "corner": "cornerFrontNum",
- "edge": "sideFrontNum",
- "face": "surfaceFrontNum"
- },
- "back_ring": {
- "corner": "cornerBackNum",
- "edge": "sideBackNum",
- "face": "surfaceBackNum"
- }
- }
- for img in images:
- img_type = img.image_type
- # 只处理环光图
- if img_type not in ["front_ring", "back_ring"]:
- continue
- # 设置主图 URL
- if img_type == "front_ring":
- response_data["frontImageUrl"] = img.image_path
- elif img_type == "back_ring":
- response_data["backImageUrl"] = img.image_path
- # 获取有效 JSON
- json_data = _get_active_json(img)
- if not json_data or "result" not in json_data:
- continue
- result_node = json_data["result"]
- # 1. 处理居中 (Center)
- center_inf = result_node.get("center_result", {}).get("box_result", {}).get("center_inference", {})
- if center_inf:
- # 格式: L/R=47/53, T/B=51/49 (取整)
- # center_inference 包含 center_left, center_right, center_top, center_bottom
- c_str = (
- f"L/R={int(round(center_inf.get('center_left', 0)))}/{int(round(center_inf.get('center_right', 0)))}, "
- f"T/B={int(round(center_inf.get('center_top', 0)))}/{int(round(center_inf.get('center_bottom', 0)))}"
- )
- if img_type == "front_ring":
- response_data["centerFront"] = c_str
- # 2. 处理尺寸 (仅从正面取,或者只要有就取) - mm 转 cm,除以 10,保留2位
- rw_mm = center_inf.get("real_width_mm", 0)
- rh_mm = center_inf.get("real_height_mm", 0)
- response_data["measureWidth"] = round(rw_mm / 10.0, 2)
- response_data["measureLength"] = round(rh_mm / 10.0, 2)
- else:
- response_data["centerBack"] = c_str
- # 2. 处理缺陷 (Defects)
- defects = result_node.get("defect_result", {}).get("defects", [])
- for defect in defects:
- # 过滤 edit_type == 'del'
- if defect.get("edit_type") == "del":
- continue
- d_type = defect.get("defect_type", "") # corner, edge, face
- d_label = defect.get("label", "") # scratch, wear, etc.
- # 统计数量
- count_key = defect_map_keys.get(img_type, {}).get(d_type)
- if count_key:
- response_data[count_key] += 1
- # 收集详细信息用于 Top N 列表
- # 需要保存:缺陷对象本身,图片路径,正反面标识
- side_str = "FRONT" if img_type == "front_ring" else "BACK"
- all_defects_collected.append({
- "defect_data": defect,
- "image_path": img.image_path,
- "side": side_str,
- "area": defect.get("actual_area", 0)
- })
- # 3. 处理 defectDetailList (Top N 切图)
- # 按实际面积从大到小排序
- all_defects_collected.sort(key=lambda x: x["area"], reverse=True)
- top_defects = all_defects_collected[:top_n_defects]
- final_defect_list = []
- for idx, item in enumerate(top_defects, start=1):
- defect = item["defect_data"]
- side = item["side"]
- original_img_path = item["image_path"]
- # 构造 ID
- d_id = idx # 1, 2, 3
- # 构造文件名: {card_id}_{seq_id}.jpg
- filename = f"{card_id}_{d_id}.jpg"
- # 执行切图
- min_rect = defect.get("min_rect")
- defect_img_url = ""
- location_str = ""
- if min_rect and len(min_rect) == 3:
- # 切图并保存
- defect_img_url = _crop_defect_image(original_img_path, min_rect, filename)
- # 计算 Location (中心坐标)
- # min_rect[0] 是 [x, y]
- cx, cy = min_rect[0]
- location_str = f"{int(cx)},{int(cy)}"
- # 构造 Type 字符串: defect_type + label (大写)
- # 例如: defect_type="edge", label="wear" -> "EDGE WEAR"
- d_type_raw = defect.get("defect_type", "")
- d_label_raw = defect.get("label", "")
- type_str = f"{d_type_raw.upper()} {d_label_raw.upper()}".strip()
- final_defect_list.append({
- "id": d_id,
- "side": side,
- "location": location_str,
- "type": type_str,
- "defectImgUrl": defect_img_url
- })
- response_data["defectDetailList"] = final_defect_list
- return response_data
|