| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- import asyncio
- import aiohttp
- import aiofiles
- import json
- import os
- from typing import Dict, Any, Tuple, List
- from datetime import datetime
- # --- 配置区域 (可根据需要修改) ---
- INFERENCE_SERVICE_URL = "http://192.168.77.78:7744"
- STORAGE_SERVICE_URL = "http://192.168.77.78:7745"
- # 固定的处理类型映射
- SCORE_TYPES = [
- "front_corner_edge",
- "front_face",
- "back_corner_edge",
- "back_face"
- ]
- SCORE_TO_IMAGE_TYPE_MAP = {
- "front_corner_edge": "front_edge",
- "front_face": "front_face",
- "back_corner_edge": "back_edge",
- "back_face": "back_face"
- }
- # --- 辅助功能函数 (内部逻辑) ---
- async def call_api_with_file(
- session: aiohttp.ClientSession,
- url: str,
- file_path: str,
- params: Dict[str, Any] = None,
- form_fields: Dict[str, Any] = None
- ) -> Tuple[int, bytes]:
- """通用的文件上传API调用函数"""
- form_data = aiohttp.FormData()
- if form_fields:
- for key, value in form_fields.items():
- form_data.add_field(key, str(value))
- async with aiofiles.open(file_path, 'rb') as f:
- content = await f.read()
- form_data.add_field(
- 'file',
- content,
- filename=os.path.basename(file_path),
- content_type='image/jpeg'
- )
- try:
- async with session.post(url, data=form_data, params=params) as response:
- response_content = await response.read()
- if not response.ok:
- print(f"错误: 调用 {url} 失败, 状态码: {response.status}")
- return response.status, response_content
- except aiohttp.ClientConnectorError as e:
- print(f"错误: 无法连接到服务 {url} - {e}")
- return 503, b"Connection Error"
- async def process_single_image(
- session: aiohttp.ClientSession,
- image_path: str,
- score_type: str,
- is_reflect_card: str
- ) -> Dict[str, Any]:
- """处理单张图片:获取转正图和分数JSON"""
- print(f" 正在处理图片: {os.path.basename(image_path)} ({score_type})")
- # 1. 获取转正后的图片
- rectify_url = f"{INFERENCE_SERVICE_URL}/api/card_inference/card_rectify_and_center"
- rectify_status, rectified_image_bytes = await call_api_with_file(
- session, url=rectify_url, file_path=image_path
- )
- if rectify_status >= 300:
- raise Exception(f"获取转正图失败: {image_path}")
- # 2. 获取分数JSON
- score_url = f"{INFERENCE_SERVICE_URL}/api/card_score/score_inference"
- score_params = {
- "score_type": score_type,
- "is_reflect_card": is_reflect_card
- }
- score_status, score_json_bytes = await call_api_with_file(
- session,
- url=score_url,
- file_path=image_path,
- params=score_params
- )
- if score_status >= 300:
- raise Exception(f"获取分数JSON失败: {image_path}")
- score_json = json.loads(score_json_bytes)
- return {
- "score_type": score_type,
- "rectified_image": rectified_image_bytes,
- "score_json": score_json
- }
- async def create_card_set(session: aiohttp.ClientSession, card_name: str) -> int:
- """创建一个新的卡组并返回其ID"""
- url = f"{STORAGE_SERVICE_URL}/api/cards/created"
- params = {'card_name': card_name}
- print(f"\n[步骤 2] 创建卡组: '{card_name}'")
- try:
- async with session.post(url, params=params) as response:
- if response.ok:
- data = await response.json()
- card_id = data.get('id')
- if card_id is not None:
- print(f" -> 成功创建卡组 ID: {card_id}")
- return card_id
- raise Exception("响应中未找到 'id' 字段")
- else:
- raise Exception(f"状态码: {response.status}")
- except Exception as e:
- raise Exception(f"创建卡组失败: {e}")
- async def upload_processed_data(
- session: aiohttp.ClientSession,
- card_id: int,
- processed_data: Dict[str, Any]
- ):
- """上传单张转正图和对应的JSON"""
- score_type = processed_data['score_type']
- image_type = SCORE_TO_IMAGE_TYPE_MAP[score_type]
- url = f"{STORAGE_SERVICE_URL}/api/images/insert/{card_id}"
- form_data = aiohttp.FormData()
- form_data.add_field('image_type', image_type)
- form_data.add_field('json_data_str', json.dumps(processed_data['score_json'], ensure_ascii=False))
- form_data.add_field(
- 'image',
- processed_data['rectified_image'],
- filename='rectified.jpg',
- content_type='image/jpeg'
- )
- try:
- async with session.post(url, data=form_data) as response:
- if response.status == 201:
- print(f" -> 上传成功: {image_type}")
- else:
- print(f" -> 上传失败 ({image_type}): {response.status}")
- except Exception as e:
- print(f" -> 上传异常 ({image_type}): {e}")
- # --- 核心 API 函数 ---
- async def process_card_images(
- is_reflect: bool,
- front_face_path: str,
- front_edge_path: str,
- back_face_path: str,
- back_edge_path: str
- ) -> int:
- """
- 核心异步处理函数。
- :return: 成功创建的 card_id,如果失败返回 -1
- """
- # 0. 数据准备
- is_reflect_str = "true" if is_reflect else "false"
- # 注意:这里的顺序必须与全局 SCORE_TYPES 列表的顺序一一对应
- # SCORE_TYPES = ["front_corner_edge", "front_face", "back_corner_edge", "back_face"]
- path_list = [
- front_edge_path, # 对应 front_corner_edge
- front_face_path, # 对应 front_face
- back_edge_path, # 对应 back_corner_edge
- back_face_path # 对应 back_face
- ]
- # 检查路径是否存在
- for p in path_list:
- if not os.path.exists(p):
- print(f"错误: 文件路径不存在 -> {p}")
- return -1
- # 生成卡片名称
- card_name = f"卡 {datetime.now().strftime('%Y-%m-%d_%H:%M:%S')}"
- async with aiohttp.ClientSession() as session:
- try:
- # 步骤 1: 并发处理图片 (转正 + 评分)
- print(f"--- 开始处理: {card_name} ---")
- print("[步骤 1] 并发图像处理...")
- process_tasks = []
- for path, s_type in zip(path_list, SCORE_TYPES):
- task = process_single_image(session, path, s_type, is_reflect_str)
- process_tasks.append(task)
- processed_results = await asyncio.gather(*process_tasks)
- # 步骤 2: 创建卡组
- card_id = await create_card_set(session, card_name)
- # 步骤 3: 并发上传结果
- print(f"\n[步骤 3] 上传数据到卡组 {card_id}...")
- upload_tasks = []
- for result in processed_results:
- task = upload_processed_data(session, card_id, result)
- upload_tasks.append(task)
- await asyncio.gather(*upload_tasks)
- print(f"--- 流程完成,卡组ID: {card_id} ---\n")
- return card_id
- except Exception as e:
- print(f"\n流程执行中发生错误: {e}")
- return -1
- # --- 同步封装函数 (方便直接调用) ---
- def run_card_processing_sync(
- is_reflect: bool,
- front_face_path: str,
- front_edge_path: str,
- back_face_path: str,
- back_edge_path: str
- ):
- """
- 同步包装函数,会自动处理 EventLoop。
- 如果你的代码不是异步的,直接调用这个函数即可。
- """
- if os.name == 'nt':
- asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
- return asyncio.run(process_card_images(
- is_reflect,
- front_face_path,
- front_edge_path,
- back_face_path,
- back_edge_path
- ))
- # --- 使用示例 ---
- if __name__ == "__main__":
- # 准备参数
- # !!!!!🪸是否反光
- my_is_reflect = True
- for img_num in range(13, 18):
- base_path = r"C:\Code\ML\Image\Card\_2025_1119_many_img\reflect2"
- p1 = os.path.join(base_path, f"{img_num}_front_coaxial_1_0.jpg")
- p2 = os.path.join(base_path, f"{img_num}_front_ring_0_1.jpg")
- p3 = os.path.join(base_path, f"{img_num}_back_coaxial_1_0.jpg")
- p4 = os.path.join(base_path, f"{img_num}_back_ring_0_1.jpg")
- # 调用函数
- print("开始调用函数...")
- final_card_id = run_card_processing_sync(
- is_reflect=my_is_reflect,
- front_face_path=p1,
- front_edge_path=p2,
- back_face_path=p3,
- back_edge_path=p4
- )
- if final_card_id != -1:
- print(f"调用成功,生成的卡片ID是: {final_card_id}")
- else:
- print("调用失败")
|