| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- import asyncio
- import aiohttp
- import aiofiles
- import json
- import os
- from typing import Dict, Any, Tuple
- from datetime import datetime
- # --- 配置区域 ---
- # 1. 服务 URL
- # INFERENCE_SERVICE_URL = "http://127.0.0.1:7744"
- # STORAGE_SERVICE_URL = "http://127.0.0.1:7745"
- INFERENCE_SERVICE_URL = "http://192.168.77.78:7744"
- STORAGE_SERVICE_URL = "http://192.168.77.78:7745"
- # 2. 要处理的卡片信息
- formate_time = datetime.now().strftime("%Y-%m-%d_%H:%M")
- CARD_NAME = f"卡 {formate_time}"
- # 是不是反光卡
- is_reflect = False
- if is_reflect:
- is_reflect_card = "true"
- else:
- is_reflect_card = "false"
- # 3. 四张卡片图片的本地路径
- front_face_img_path = r"C:\Code\ML\Image\Card\_250915_many_capture_img\_250915_1643_no_reflect_hand_defect\34_front_coaxial_1_0.jpg"
- front_edge_img_path = r"C:\Code\ML\Image\Card\_250915_many_capture_img\_250915_1643_no_reflect_hand_defect\34_front_ring_0_1.jpg"
- back_face_img_path = r"C:\Code\ML\Image\Card\_250915_many_capture_img\_250915_1643_no_reflect_hand_defect\34_back_coaxial_1_0.jpg"
- back_edge_img_path = r"C:\Code\ML\Image\Card\_250915_many_capture_img\_250915_1643_no_reflect_hand_defect\34_back_ring_0_1.jpg"
- IMAGE_PATHS = [
- front_edge_img_path,
- front_face_img_path,
- back_edge_img_path,
- back_face_img_path
- ]
- # 4. 推理服务需要的 score_type 参数
- SCORE_TYPES = [
- "front_corner_edge",
- "front_face",
- "back_corner_edge",
- "back_face"
- ]
- SCORE_TO_IMAGE_TYPE_MAP = {
- "front_corner_edge": "front_edge",
- "front_face": "front_face",
- "back_corner_edge": "back_edge",
- "back_face": "back_face"
- }
- # --- 脚本主逻辑 ---
- async def call_api_with_file(
- session: aiohttp.ClientSession,
- url: str,
- file_path: str,
- params: Dict[str, Any] = None,
- form_fields: Dict[str, Any] = None
- ) -> Tuple[int, bytes]:
- """通用的文件上传API调用函数 (从文件路径读取)"""
- form_data = aiohttp.FormData()
- if form_fields:
- for key, value in form_fields.items():
- form_data.add_field(key, str(value))
- async with aiofiles.open(file_path, 'rb') as f:
- content = await f.read()
- form_data.add_field(
- 'file',
- content,
- filename=os.path.basename(file_path),
- content_type='image/jpeg'
- )
- try:
- async with session.post(url, data=form_data, params=params) as response:
- response_content = await response.read()
- if not response.ok:
- print(f"错误: 调用 {url} 失败, 状态码: {response.status}")
- print(f" 错误详情: {response_content.decode(errors='ignore')}")
- return response.status, response_content
- except aiohttp.ClientConnectorError as e:
- print(f"错误: 无法连接到服务 {url} - {e}")
- return 503, b"Connection Error"
- async def process_single_image(
- session: aiohttp.ClientSession,
- image_path: str,
- score_type: str,
- is_reflect_card: str
- ) -> Dict[str, Any]:
- """处理单张图片:获取转正图和分数JSON"""
- print(f" 正在处理图片: {image_path} (类型: {score_type})")
- # 1. 获取转正后的图片
- rectify_url = f"{INFERENCE_SERVICE_URL}/api/card_inference/card_rectify_and_center"
- rectify_status, rectified_image_bytes = await call_api_with_file(
- session, url=rectify_url, file_path=image_path
- )
- if rectify_status >= 300:
- raise Exception(f"获取转正图失败: {image_path}")
- print(f" -> 已成功获取转正图")
- # 2. 获取分数JSON
- score_url = f"{INFERENCE_SERVICE_URL}/api/card_score/score_inference"
- score_params = {
- "score_type": score_type,
- "is_reflect_card": is_reflect_card
- }
- score_status, score_json_bytes = await call_api_with_file(
- session,
- url=score_url,
- file_path=image_path,
- params=score_params
- )
- if score_status >= 300:
- raise Exception(f"获取分数JSON失败: {image_path}")
- score_json = json.loads(score_json_bytes)
- print(f" -> 已成功获取分数JSON")
- return {
- "score_type": score_type,
- "rectified_image": rectified_image_bytes,
- "score_json": score_json
- }
- async def create_card_set(session: aiohttp.ClientSession, card_name: str) -> int:
- """创建一个新的卡组并返回其ID"""
- url = f"{STORAGE_SERVICE_URL}/api/cards/created"
- params = {'card_name': card_name}
- print(f"\n[步骤 2] 正在创建卡组,名称: '{card_name}'...")
- try:
- async with session.post(url, params=params) as response:
- if response.ok:
- data = await response.json()
- card_id = data.get('id')
- if card_id is not None:
- print(f" -> 成功创建卡组, ID: {card_id}")
- return card_id
- else:
- raise Exception("创建卡组API的响应中未找到'id'字段")
- else:
- error_text = await response.text()
- raise Exception(f"创建卡组失败, 状态码: {response.status}, 详情: {error_text}")
- except aiohttp.ClientConnectorError as e:
- raise Exception(f"无法连接到存储服务 {url} - {e}")
- # 【修改点】: 修正此函数
- async def upload_processed_data(
- session: aiohttp.ClientSession,
- card_id: int,
- processed_data: Dict[str, Any]
- ):
- """上传单张转正图和对应的JSON到存储服务"""
- score_type = processed_data['score_type']
- image_type_for_storage = SCORE_TO_IMAGE_TYPE_MAP[score_type]
- print(f" 正在上传图片, 类型: {image_type_for_storage}...")
- url = f"{STORAGE_SERVICE_URL}/api/images/insert/{card_id}"
- # 直接构建FormData,因为图片数据已经在内存中 (processed_data['rectified_image'])
- form_data = aiohttp.FormData()
- form_data.add_field('image_type', image_type_for_storage)
- form_data.add_field('json_data_str', json.dumps(processed_data['score_json'], ensure_ascii=False))
- form_data.add_field(
- 'image',
- processed_data['rectified_image'],
- filename='rectified.jpg',
- content_type='image/jpeg'
- )
- try:
- async with session.post(url, data=form_data) as response:
- if response.status == 201:
- print(f" -> 成功上传并关联图片: {image_type_for_storage}")
- else:
- error_text = await response.text()
- print(
- f" -> 错误: 上传失败! 类型: {image_type_for_storage}, 状态码: {response.status}, 详情: {error_text}")
- except aiohttp.ClientConnectorError as e:
- print(f" -> 错误: 无法连接到存储服务 {url} - {e}")
- async def main():
- """主执行函数"""
- async with aiohttp.ClientSession() as session:
- # 步骤 1: 并发处理所有图片, 获取转正图和分数
- print("[步骤 1] 开始并发处理所有图片...")
- process_tasks = []
- for path, s_type in zip(IMAGE_PATHS, SCORE_TYPES):
- if not os.path.exists(path):
- print(f"错误:文件不存在,请检查路径配置: {path}")
- return
- task = asyncio.create_task(process_single_image(session, path, s_type, is_reflect_card))
- process_tasks.append(task)
- try:
- processed_results = await asyncio.gather(*process_tasks)
- print(" -> 所有图片处理完成!")
- except Exception as e:
- print(f"\n在处理图片过程中发生错误: {e}")
- return
- # 步骤 2: 创建卡组
- try:
- card_id = await create_card_set(session, CARD_NAME)
- except Exception as e:
- print(f"\n创建卡组时发生严重错误: {e}")
- return
- # 步骤 3: 并发上传所有处理好的数据
- print(f"\n[步骤 3] 开始为卡组ID {card_id} 并发上传图片和数据...")
- upload_tasks = []
- for result in processed_results:
- task = asyncio.create_task(upload_processed_data(session, card_id, result))
- upload_tasks.append(task)
- await asyncio.gather(*upload_tasks)
- print(" -> 所有数据上传完成!")
- print("\n====================")
- print("所有流程执行完毕!")
- print("====================")
- if __name__ == "__main__":
- if len(IMAGE_PATHS) != 4 or len(SCORE_TYPES) != 4:
- print("错误: IMAGE_PATHS 和 SCORE_TYPES 列表的长度必须为4,请检查配置。")
- else:
- # 在 Windows 上使用 ProactorEventLoop 可能会更稳定
- if os.name == 'nt':
- asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
- asyncio.run(main())
|